XXI OLIMPIADA NACIONAL DE MATEMÁTICA


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "XXI OLIMPIADA NACIONAL DE MATEMÁTICA"

Transcripción

1 TERCERA RONDA REGIONAL - 22 DE AGOSTO DE NIVEL 1 Nombre y Apellido: Puntaje: Colegio: Grado: Sección: Teléfono: Celular: Los dibujos correspondientes a los problemas de Geometría, no están hechos a medida ni a escala, por lo tanto no deben utilizarse para medirlos y así tratar de encontrar la solución del problema. Tienes 80 minutos para resolver los problemas. Escribe la letra de la respuesta de cada problema en la tabla que tienes al final de la prueba. No escribas nada más en la hoja de examen ni marques las respuestas que aparecen en cada problema. No se permite el uso de calculadora. Suerte y que te diviertas. El señor Pablo tiene 34 años, 16 años más que la suma de las edades de sus dos sobrinos. Si uno de los sobrinos tiene doble edad que el otro, cuál es la edad del sobrino mayor? El Mauna Kea es la montaña más alta de la Tierra y mide m de altura. La montaña más alta de Marte mide 24 km de altura. Qué fracción de la montaña más alta de Marte es la montaña más alta de la Tierra? El triple de la edad de Elena, más el doble de su edad, aumentada en 6 años es igual a 91 años. Calcular la edad de Elena. Esteban ve en la pizarra la siguiente lista de números y la profesora les explica que se escribieron siguiendo una cierta regla. Esteban escribe dentro del cuadrado el número que sigue en la lista. Qué número escribió Esteban? 2, 4, 6, 10, 16, 26, María pregunta en una liquidación el precio de polleras y blusas. Le responden que 2 polleras y 5 blusas cuestan en total G. Si cada blusa cuesta G más que una pollera, cuánto debe pagar para comprar una pollera y una blusa? Beatriz tiene en una bolsa cinco bolillas numeradas del 1 al 5. Sin mirar, Beatriz saca tres bolillas y suma los números que figuran en las mismas. Cuántos resultados diferentes puede obtener Beatriz? Cuántos números enteros positivos de 4 cifras se pueden dividir exactamente entre 1 200?

2 La presión de la atmósfera en Venus es mm Hg (milímetros de mercurio). En la tierra esa presión es 760 mm Hg. Cuántas veces menor es la presión de la atmósfera en la tierra, comparada con la de Venus? En un cuadrado ABCD, los lados miden 12 cm cada uno. M es el punto medio del lado BC, N es el punto medio del lado DC y E es el punto medio del lado AB. Calcular el área de la figura EMND. 0 En el triángulo ABC, los puntos P, Q y R dividen al lado AC en cuatro segmentos iguales. Si se suman las áreas de los triángulos ABQ y PBR resulta 104 cm 2. Calcular el área del triángulo ABC. PROBLEMAS 0

3 TERCERA RONDA REGIONAL - 22 DE AGOSTO DE NIVEL 2 Nombre y Apellido: Puntaje: Colegio: Grado: Sección: Teléfono: Celular: Los dibujos correspondientes a los problemas de Geometría, no están hechos a medida ni a escala, por lo tanto no deben utilizarse para medirlos y así tratar de encontrar la solución del problema. Tienes 80 minutos para resolver los problemas. Escribe la letra de la respuesta de cada problema en la tabla que tienes al final de la prueba. No escribas nada más en la hoja de examen ni marques las respuestas que aparecen en cada problema. No se permite el uso de calculadora. Suerte y que te diviertas. En el paralelogramo de la figura, los lados miden 20 cm y 12 cm. La altura correspondiente al lado de 20 cm es 9 cm. Calcular la altura que corresponde al lado de 12 cm. Pedro inventa un acertijo que propone a sus compañeros: en mi casa tengo un árbol que por casualidad tiene una altura que es igual a 10 metros más que la mitad de su altura, cuál es la altura del árbol? Determina la altura del árbol del acertijo. En el cuadrado de la figura, EB = 2 AE y la superficie pintada mide 72 cm 2. Calcular el área del triángulo ADE. La profesora de Emilia pide a sus alumnos que encuentren cuántas veces se escribe el número 3 al escribir todos los números comprendidos entre el 1 y el 100. Si Emilia encuentra el resultado correcto, qué resultado encuentra Emilia? En el paralelogramo de la figura, AE y DE son bisectrices. Calcular la medida del ángulo x. Qué número sigue en la lista? 5, 6, 12, 14, 19, 22, 26, 30, 33, 38, 40,

4 El papá de Pedro tiene un terreno con forma rectangular de dimensiones 56 m por 40 m. Él desea dividir el terreno en parcelas cuadradas iguales, de tal forma que no sobre terreno y que la longitud de cada lado de las parcelas sea un número entero expresado en metros. Cumpliendo con las 4 condiciones divide el terreno en la MENOR cantidad de parcelas posibles, En cuántas parcelas lo divide? La masa de la tierra crece a razón de kg por año debido al agregado de polvo extraterrestre. Cuánto aumentará la masa de la Tierra en los próximos años? Clarita dio un examen en una competencia de Matemática. La prueba constaba de 20 ejercicios. Por cada ejercicio bien resuelto se otorga 2 puntos; por cada ejercicio mal resuelto se resta 1 punto y si un ejercicio no se resuelve no se agrega ni saca puntos. Clarita logró hacer 31 puntos en la prueba. Cuántos ejercicios como máximo resolvió correctamente? 0 En un cuadrado ABCD de 4,8 cm de perímetro, M es un punto del lado AB tal que MB = 2 AM, N es un punto del lado BC tal que BN = NC y P es un punto del lado AD tal que PD = 3 AP. Calcular el área de la figura PMNCD. PROBLEMAS 0

5 TERCERA RONDA REGIONAL - 22 DE AGOSTO DE NIVEL 3 Nombre y Apellido: Puntaje: Colegio: Grado: Sección: Teléfono: Celular: Los dibujos correspondientes a los problemas de Geometría, no están hechos a medida ni a escala, por lo tanto no deben utilizarse para medirlos y así tratar de encontrar la solución del problema. Tienes 80 minutos para resolver los problemas. Escribe la letra de la respuesta de cada problema en la tabla que tienes al final de la prueba. No escribas nada más en la hoja de examen ni marques las respuestas que aparecen en cada problema. No se permite el uso de calculadora. Suerte y que te diviertas. Cuál es el menor número que tiene como divisores a los números 50, 168, 180 y 198? La masa de Mercurio equivale a 0,54 la masa de la Marte. La masa de Mercurio es igual a 3, kg. Calcular la masa de Marte. Los científicos estiman que en la Vía Láctea hay alrededor de millones de estrellas. De todas ellas nosotros podemos observar unas Cuál es la relación entre las estrellas visibles y las estrellas que existen en la Vía Láctea? La masa de la tierra es 5, kg. Esta masa crece a razón de kg por año debido al agregado de polvo extraterrestre. Cuál era la masa de la tierra hace años? (Expresar el resultado con 4 cifras significativas) En un polígono convexo de n lados, se elige uno de los vértices y desde este vértice se trazan diagonales a los otros vértices. En cuántos triángulos queda dividido el polígono? Observación: Calcula el número que sigue en la lista: 3, 3, 6, 24, 192,.

6 El grado de Silvia tiene una pequeña cantina. En ella hay cierto número de caramelos. Silvia, que es amante de la matemática, dice a sus compañeros: Si se triplica la cantidad de caramelos habría más de 49 caramelos, pero si se cuadruplica dicha cantidad habría menos de 69 caramelos, cuántos caramelos hay? Enrique, el compañero de Silvia, resuelve el acertijo. Qué respuesta dio Enrique? En un cuadrado ABCD, el lado mide 10 cm. M es el punto medio del lado AD. Se traza MB. Calcular la distancia desde el vértice C al segmento MB. Las dos circunferencias mayores tienen el mismo radio. La circunferencia menor del gráfico tiene un radio de 4 cm. Calcular el radio de las circunferencias mayores. (Las circunferencias son tangentes entre sí y tangentes a la recta) 0 En la figura se ven superpuestos un círculo de radio 1 y un triángulo equilátero de lado 3. El centro del círculo coincide con el ortocentro del triángulo. Cuánto mide el perímetro de la figura que se obtiene? PROBLEMAS 0

7 TERCERA RONDA REGIONAL - 22 DE AGOSTO DE 2009 NIVEL 1 NIVEL 2 NIVEL 3 PROB. RESPUES TAS PROB. RESPUES TAS PROB. RESPUES TAS 12 años 15 cm m 6, kg o 6, kg 17 años 24 cm 2 2, , kg G 90º n parcelas , kg o kg cm cm cm 2 0 1,14 cm π A cada problema le corresponde 1 punto. Para lograr el punto el alumno debe escribir la respuesta CORRECTA y COMPLETA, pero no pierde el punto si no escribe la unidad de medida.

Nombre y Apellido:... Puntaje:... Colegio:... Grado:... Teléfono (L B):... Celular: Número de Cédula de Identidad:...

Nombre y Apellido:... Puntaje:... Colegio:... Grado:... Teléfono (L B):... Celular: Número de Cédula de Identidad:... XXII OLIMPIADA NACIONAL DE MATEMÁTICA RONDA REGIONAL 14 DE AGOSTO DE 2010 - NIVEL 1 PEGÁ TU STICKER AQUÍ Nombre y Apellido:............................................ Puntaje:......... Colegio:.......................................................

Más detalles

Problema 1 En la Figura 2 de la gráfica hay 3 ángulos. Cuántos ángulos hay en la Figura 3? A) 3 D) 6 B) 4 E) 7 C) 5 F) n. d. l. a.

Problema 1 En la Figura 2 de la gráfica hay 3 ángulos. Cuántos ángulos hay en la Figura 3? A) 3 D) 6 B) 4 E) 7 C) 5 F) n. d. l. a. PRIMERA RONDA COLEGIAL NIVEL 1 Nombre y Apellido:............................................ Puntaje: Grado/Curso....... Sección:...... Los dibujos correspondientes a los problemas de Geometría, no están

Más detalles

XIX OLIMPIADA NACIONAL DE MATEMÁTICA TERCERA RONDA REGIONAL - 1 DE SETIEMBRE DE 2007 - NIVEL 1. Nombre y Apellido:... C.I.:...

XIX OLIMPIADA NACIONAL DE MATEMÁTICA TERCERA RONDA REGIONAL - 1 DE SETIEMBRE DE 2007 - NIVEL 1. Nombre y Apellido:... C.I.:... TERCERA RONDA REGIONAL - 1 DE SETIEMBRE DE 2007 - NIVEL 1 Nombre y Apellido:..................................... C.I.:.................. Grado:......... Sección:........ Puntaje:........... Los dibujos

Más detalles

Taller especial de capacitación de los profesores del 4º Ciclo

Taller especial de capacitación de los profesores del 4º Ciclo Taller especial de capacitación de los profesores del 4º Ciclo Este taller fue preparado para satisfacer la inquietud de los docentes que solicitaron más capacitación Olimpiada Akâ Porâ Olimpiada Nacional

Más detalles

26.º OLIMPIADA NACIONAL JUVENIL DE MATEMÁTICA CUARTA RONDA DEPARTAMENTAL NIVEL 1 13 de setiembre de 2014

26.º OLIMPIADA NACIONAL JUVENIL DE MATEMÁTICA CUARTA RONDA DEPARTAMENTAL NIVEL 1 13 de setiembre de 2014 CUARTA RONDA DEPARTAMENTAL NIVEL 1 Nombre y Apellido:............................................... Colegio:............................. Grado:...... Sección:..... Ciudad:................................

Más detalles

MÓDULO Nº 3. Nivelación. Matemática Módulo Nº3. Contenidos. Polígonos Circunferencia y Círculo Volúmenes

MÓDULO Nº 3. Nivelación. Matemática Módulo Nº3. Contenidos. Polígonos Circunferencia y Círculo Volúmenes MÓDULO Nº 3 Nivelación Matemática 2005 Módulo Nº3 Contenidos Polígonos Circunferencia y Círculo Volúmenes Nivelación Polígonos Polígono Regular: Son aquellos polígonos que tienen todos sus lados y ángulos

Más detalles

Triángulos. 1. En todo triángulo la suma de sus ángulos interiores es En todo triángulo la suma de los ángulos exteriores es 360

Triángulos. 1. En todo triángulo la suma de sus ángulos interiores es En todo triángulo la suma de los ángulos exteriores es 360 Triángulos Es un polígono formado por tres segmentos cuyos tres puntos de intersección no están en línea recta. Triángulo ABC A,B y C son vértices del triángulo α, β, γ s interiores. a, b y c, longitud

Más detalles

UNIDAD 2: ELEMENTOS GEOMÉTRICOS

UNIDAD 2: ELEMENTOS GEOMÉTRICOS UNIDAD 2: ELEMENTOS GEOMÉTRICOS POLÍGONO Región del plano limitada por una línea poligonal cerrada. 1. Dibuja polígonos y señala los lados, vértices y ángulos. 4 lados Ángulo Vértice Lado 5 lados Este

Más detalles

EJERCICIOS MÓDULO 4. Geometría plana. 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9?

EJERCICIOS MÓDULO 4. Geometría plana. 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9? Seminario Universitario Matemática EJERCICIOS MÓDULO 4 Geometría plana 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9? ) Cuántos lados tiene un polígono en el cual la suma de

Más detalles

a) Las mediatrices de un triángulo se cortan en un punto llamado... b) Las bisectrices de un triángulo se cortan en un punto llamado...

a) Las mediatrices de un triángulo se cortan en un punto llamado... b) Las bisectrices de un triángulo se cortan en un punto llamado... Geometría Plana 3º E.S.O. PARTE TEÓRICA 1.- Define para un triángulo los siguientes conceptos: Mediatriz: Bisectriz: Mediana: Altura: 2.- Completa las siguientes frases: a) Las mediatrices de un triángulo

Más detalles

UNIDAD DIDÁCTICA 10ª. Objetivos didácticos. Al finalizar el tema serás capaz de:

UNIDAD DIDÁCTICA 10ª. Objetivos didácticos. Al finalizar el tema serás capaz de: UNIDAD DIDÁCTICA 10ª Etapa: Educación Primaria. Ciclo: 3º Curso 6º Área del conocimiento: Matemáticas Nº UD: 10ª (12 sesiones de 60 minutos; a cuatro sesiones por semana) Título: Los polígonos, el círculo,

Más detalles

Llamamos área o superficie a la medida de la región interior de un polígono. Figura Geométrica Perímetro Área. p = a + b + c 2 2.

Llamamos área o superficie a la medida de la región interior de un polígono. Figura Geométrica Perímetro Área. p = a + b + c 2 2. GUÍA GEOMETRÍA PERÍMETRO Y AREA DE FIGURAS PLANAS Llamamos área o superficie a la medida de la región interior de un polígono. El perímetro corresponde a la suma de los lados del polígono. Figura Geométrica

Más detalles

GEOMETRÍA 1ESO ÁNGULOS & TRIÁNGULOS

GEOMETRÍA 1ESO ÁNGULOS & TRIÁNGULOS Un punto se nombra con letras mayúsculas: A, B, C Una recta, formada por infinitos puntos, se nombra con letras minúsculas: a, b, c Dos rectas pueden ser paralelas, secantes o coincidentes. 1. Paralelas

Más detalles

Examen Canguro Matemático Mexicano Nivel Cadete Olímpico

Examen Canguro Matemático Mexicano Nivel Cadete Olímpico Examen Canguro Matemático Mexicano Nivel Cadete Olímpico Instrucciones: En la hoja de respuestas, llena el círculo que corresponda a la respuesta correcta para cada pregunta. Si en una misma pregunta aparecen

Más detalles

Cuadriláteros y circunferencia

Cuadriláteros y circunferencia CLAVES PARA EMPEZAR Un triángulo isósceles tiene dos lados iguales: b c. Como es rectángulo, se cumple el teorema de Pitágoras: 10 2 b 2 b 2 100 2b 2 b 7,07. Los dos lados miden 7,07 cm cada uno. r A C

Más detalles

MATEMÁTICAS 1º DE ESO

MATEMÁTICAS 1º DE ESO MATEMÁTICAS 1º DE ESO LOMCE TEMA X: POLÍGONOS Y CIRCUNFERENCIAS Triángulos. Elementos y relaciones. Tipos de triángulos. Rectas y puntos notables: o Mediatrices y circuncentro. o Bisectrices e incentro.

Más detalles

FIGURAS PLANAS. Es una figura plana delimitada por una línea poligonal cerrada.

FIGURAS PLANAS. Es una figura plana delimitada por una línea poligonal cerrada. 1.- Qué es un polígono? FIGURAS PLANAS Es una figura plana delimitada por una línea poligonal cerrada. Los elementos de un polígono son: - Lado: Se llama lado a cada segmento que limita un polígono - Vértice:

Más detalles

XI Concurso Intercentros de Matemáticas de la Comunidad de Madrid

XI Concurso Intercentros de Matemáticas de la Comunidad de Madrid PRUEBA POR EQUIPOS 1º y 2º de E.S.O. (45 minutos) 1. Antonio escribe en la pizarra un número N de cinco cifras. Marta copia el número de Antonio y le añade un 1 a la derecha y obtiene un número de seis

Más detalles

TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco.

TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. 2009 TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. Manuel González de León. mgdl 01/01/2009 TEMA 10: FORMAS Y FIGURAS PLANAS. 1. Polígonos. 2.

Más detalles

RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA

RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA 1.- Figuras Congruentes y Semejantes. Teorema de Thales. Escalas. - Se dice que dos figuras geométricas son congruentes si tienen la misma forma y el mismo

Más detalles

Geometría. Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid

Geometría. Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Geometría Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Ángulos Un ángulo es la región del plano limitada por dos semirrectas con el origen común. Lados Vértice Clasificación de los ángulos

Más detalles

donde n es el numero de lados. n APOTEMA: Es la altura de un triangulo formado por el centro del polígono regular y dos vértices consecutivos.

donde n es el numero de lados. n APOTEMA: Es la altura de un triangulo formado por el centro del polígono regular y dos vértices consecutivos. Polígonos regulares 1 POLIGONOS REGULARES DEFINICION: Un polígono regular es el que tiene todos sus lados y sus ángulos congruentes. DEFINICION: Un polígono esta inscrito en una circunferencia si sus vértices

Más detalles

GEOMETRÍA DE 6º DE E.P. MARISTAS LA INMACULADA.

GEOMETRÍA DE 6º DE E.P. MARISTAS LA INMACULADA. GEOMETRÍA DE 6º DE E.P. MARISTAS LA INMACULADA. Profesor: Alumno:. Curso: Sección: 1. LAS FIGURAS PLANAS 2. ÁREA DE LAS FIGURAS PLANAS 3. CUERPOS GEOMÉTRICOS . FIGURAS PLANAS 1. Los polígonos y suss elementos

Más detalles

1. Teoremas válidos para triángulos rectángulos

1. Teoremas válidos para triángulos rectángulos 1. Teoremas válidos para triángulos rectángulos Sea ABC triángulo rectángulo en C, entonces: El lado opuesto al ángulo recto, AB, es llamado HIPOTENUSA, y los lados AC y BC, CATETOS. cateto hipotenusa

Más detalles

13Soluciones a los ejercicios y problemas PÁGINA 250

13Soluciones a los ejercicios y problemas PÁGINA 250 PÁGINA 50 Pág. 1 Á REAS Y PERÍMETROS DE FIGURAS SENCILLAS Halla el área y el perímetro de las figuras coloreadas de los siguientes ejercicios: 1 a) b) 5 dm 4 cm cm 5 cm 8 cm a) 5 5 dm b) 8 8 cm P 5 4 0

Más detalles

POLÍGONOS

POLÍGONOS POLÍGONOS 8.1.1 8.1.5 Después de estudiar los triángulos y los cuadriláteros, los alumnos ahora amplían su estudio a todos los polígonos. Un polígono es una figura bidimensional, cerrada, formada por tres

Más detalles

open green road Guía Matemática tutora: Jacky Moreno .co

open green road Guía Matemática tutora: Jacky Moreno .co Guía Matemática PERÍMETRO Y ÁREA tutora: Jacky Moreno.co 1. Perímetro y área de figuras planas Los registros más antiguos que se tienen del campo de la geometría corresponden a la cultura mesopotámica,

Más detalles

TALLER DE GEOMETRIA GRADO SEXTO SEGUNDO PERIODO 2015 LIC DIANA VIOLETH OLARTE MARIN. Resolver el taller y sustentar POLIGONOS:

TALLER DE GEOMETRIA GRADO SEXTO SEGUNDO PERIODO 2015 LIC DIANA VIOLETH OLARTE MARIN. Resolver el taller y sustentar POLIGONOS: TALLER DE GEOMETRIA GRADO SEXTO SEGUNDO PERIODO 2015 LIC DIANA VIOLETH OLARTE MARIN. Resolver el taller y sustentar POLIGONOS: Un polígono es un figura cerrada formada por segmentos de recta que no se

Más detalles

CONCEPTO DE POLÍGONO. RECONOCER Y CLASIFICAR POLÍGONOS

CONCEPTO DE POLÍGONO. RECONOCER Y CLASIFICAR POLÍGONOS OBJETIVO 1 CONCEPTO DE POLÍGONO. RECONOCER Y CLASIICAR POLÍGONOS NOMBRE: CURSO: ECHA: POLÍGONOS Varios segmentos unidos entre sí forman una línea poligonal. Una línea poligonal cerrada es un polígono.

Más detalles

La circunferencia y el círculo

La circunferencia y el círculo La circunferencia y el círculo 1.- LA CIRCUNFERENCIA Es una línea curva, cerrada y plana en la que todos sus puntos están a la misma distancia de un punto interior llamado centro. 2.- ELEMENTOS DE LA CIRCUNFERENCIA:

Más detalles

EJERCICIOS DE MATEMÁTICAS 2º E.S.O. TEOREMA DE PITÁGORAS Y DISTANCIAS

EJERCICIOS DE MATEMÁTICAS 2º E.S.O. TEOREMA DE PITÁGORAS Y DISTANCIAS Colegio Ntra. Sra. de las Escuelas Pías Dpto. de Matemáticas EJERCICIOS DE MATEMÁTICAS 2º E.S.O. TEOREMA DE PITÁGORAS Y DISTANCIAS 1. Un ángulo agudo de un triángulo rectángulo mide la mitad que el otro.

Más detalles

Contenido Objetivos Recursos Total de hora s Polígono regular. Clasificación, elementos, áreas.

Contenido Objetivos Recursos Total de hora s Polígono regular. Clasificación, elementos, áreas. Contenido Objetivos Recursos Total de hora s Polígono regular. Clasificación, elementos, áreas. Identifica las clasificacione s de los polígonos regulares Power Point: clasificación y elementos de los

Más detalles

INSTITUTO RAÚL SCALABRINI ORTIZ CUADRILATERO

INSTITUTO RAÚL SCALABRINI ORTIZ CUADRILATERO CUADRILATERO INTRODUCCION Son polígonos de 4 lados. La suma de los ángulos interiores es igual a 360º y la suma de los ángulos exteriores es igual a 360º. Vértices : A, B, C, D Lados : a, b, c, d Ángulos

Más detalles

Ejercicios para 1 EMT geometría (extraídos de los parciales y exámenes)

Ejercicios para 1 EMT geometría (extraídos de los parciales y exámenes) Ejercicio 1 Construya con regla y compas un triángulo ABC conociendo: { Indicar programa de construcción. Ejercicio 2 Dado ABC tal que: { se pide a) Construir todos los puntos P que cumplan simultáneamente:

Más detalles

DIBUJO TÉCNICO II EJERCICIOS DE APOYO. Prof. Jesús Macho Martínez

DIBUJO TÉCNICO II EJERCICIOS DE APOYO. Prof. Jesús Macho Martínez DIBUJO TÉCNICO II EJERCICIOS DE APOYO Esta obra de Jesús Macho Martínez está bajo una Licencia Creative Commons Atribución-CompartirIgual 3.0 Unported 1º.- Deducir razonadamente el valor del ángulo α marcado

Más detalles

. M odulo 7 Geometr ıa Gu ıa de Ejercicios

. M odulo 7 Geometr ıa Gu ıa de Ejercicios . Módulo 7 Geometría Guía de Ejercicios Índice Unidad I. Conceptos y elementos de geometría. Ejercicios Resueltos... pág. 02 Ejercicios Propuestos... pág. 09 Unidad II. Áreas y perímetros de figuras planas.

Más detalles

MYP (MIDDLE YEARS PROGRAMME)

MYP (MIDDLE YEARS PROGRAMME) MYP (MIDDLE YEARS PROGRAMME) 2014-2015 Fecha 19/05/2015 APUNTES DE GEOMETRÍA 2º ESO 1. EL TEOREMA DE PITÁGORAS El teorema de Pitágoras establece que en todo triángulo rectángulo, el cuadrado de la hipotenusa

Más detalles

1 Ángulos en las figuras planas

1 Ángulos en las figuras planas Unidad 11. Elementos de geometría plana 1 Ángulos en las figuras planas Página 139 1. Cinco de los ángulos de un heágono irregular miden 147, 101, 93, 1 y 134. Halla la medida del seto ángulo. Los seis

Más detalles

UNIDAD I. LOS ELEMENTOS DE LA GEOMETRÍA ANALÍTICA Lugar Geométrico

UNIDAD I. LOS ELEMENTOS DE LA GEOMETRÍA ANALÍTICA Lugar Geométrico BACHILLERATO DEL INSTITUTO ORIENTE DE PUEBLA, A.C. CURSO ESCOLAR 2016-2017 BLOQUE UNO MATERIA: Matemáticas III MAESTRA: Mtra. María Desiderée Gorostieta García UNIDAD I. LOS ELEMENTOS DE LA GEOMETRÍA ANALÍTICA

Más detalles

2. Obtener la longitud de la base de un triángulo isósceles cuyos lados iguales miden 17 cm y su altura 8 cm.

2. Obtener la longitud de la base de un triángulo isósceles cuyos lados iguales miden 17 cm y su altura 8 cm. ACTIVIDAD DE APOYO GEOMETRIA GRADO 11 1. Calcular el valor de la altura del triángulo equilátero y de la diagonal del cuadrado (resultado con dos decimales, bien aproimados): h 6 cm (Sol: 3,46 cm) (Sol:

Más detalles

Introducción. 1. Sabes por qué se sostienen los triángulos? 2. Son todos iguales?

Introducción. 1. Sabes por qué se sostienen los triángulos? 2. Son todos iguales? EL TRIÁNGULO: Un polígono con propiedades especiales Identificación de los puntos y las líneas notables del triángulo Introducción 1. Sabes por qué se sostienen los triángulos? 2. Son todos iguales? Figura

Más detalles

TRABAJO DE RECUPERACIÓN TERCER BIMESTRE MATEMÁTICAS I

TRABAJO DE RECUPERACIÓN TERCER BIMESTRE MATEMÁTICAS I TRABAJO DE RECUPERACIÓN TERCER BIMESTRE MATEMÁTICAS I PROFRA. EVA CASTILLO BAÑOS NOMBRE DEL ESTUDIANTE: GRUPO: INSTRUCCIONES: Imprimir en hojas blancas tamaño carta. Resolver con lápiz. Se debe incluir

Más detalles

DEPARTAMENTO DE MATEMATICAS

DEPARTAMENTO DE MATEMATICAS 1.- Halla la suma de los ángulos interiores de los siguientes polígonos convexos. a) Cuadrilátero b) Heptágono c) Octógono 2.- Halla la medida de los ángulos interiores de: a) Un octógono regular. b) Un

Más detalles

Academia de Matemáticas T.M Geometría Analítica Página 1

Academia de Matemáticas T.M Geometría Analítica Página 1 INSTITUTO POLITECNICO NACIONAL CENTRO DE ESTUDIOS CIENTIFICOS Y TECNOLOGICOS 10. CARLOS VALLEJO MÁRQUEZ PROBLEMARIO DE GEOMETRIA ANALITICA Distancia entre puntos 1.- Determina la distancia entre los puntos

Más detalles

9 cm. 11 cm. Medidas de los lados de la

9 cm. 11 cm. Medidas de los lados de la ACTIVIDAD 1 En equipos resolver el siguiente problema: 1. Los lados de un cuadrilátero miden 5, 9, 2 y 11 cm, tal como se muestra en la figura; si se realiza una reproducción a escala y el lado correspondiente

Más detalles

Examen de Matemáticas (1º E.S.O) UNIDAD 13: ÁREAS Y PERÍMETROS. Grupo: 1ºB Fecha: 11/06/2009

Examen de Matemáticas (1º E.S.O) UNIDAD 13: ÁREAS Y PERÍMETROS. Grupo: 1ºB Fecha: 11/06/2009 I.E.S SAN JOSÉ (CORTEGANA) DEPARTAMENTO DE MATEMÁTICAS Examen de Matemáticas (1º E.S.O) UNIDAD 13: ÁREAS Y PERÍMETROS Nombre y Apellidos: Grupo: 1ºB Fecha: 11/06/009 CALIFICACIÓN: Ejercicio nº 1.- Calcula

Más detalles

TEMARIO PARA EL EXAMEN DE RECUPERACIÓN 4TO AÑO SECUNDARIA 2013

TEMARIO PARA EL EXAMEN DE RECUPERACIÓN 4TO AÑO SECUNDARIA 2013 TEMARIO PARA EL EXAMEN DE RECUPERACIÓN 4TO AÑO SECUNDARIA 2013 1.- FUNCIONES: Dominio y rango, función real de variable real, operaciones con funciones, composición de funciones. 2.- ÁNGULOS: congruencia

Más detalles

ÁREAS DE FIGURAS PLANAS

ÁREAS DE FIGURAS PLANAS 6. ÁREAS DE FIGURAS PLANAS EN ESTA UNIDAD VAS A APRENDER ÁREAS POLÍGONOS RECTÁNGULO CUADRADO PARALELOGRAMO TRIÁNGULO TRAPECIO ROMBO POLÍGONO IRREGULAR FÓRMULA RESOLUCIÓN DE PROBLEMAS CÍRCULO FÓRMULA FIGURAS

Más detalles

Polígono Polígono es la porción del plano limitada por rectas que se cortan dos a dos.

Polígono Polígono es la porción del plano limitada por rectas que se cortan dos a dos. Geometría plana B6 Triángulos Polígono Polígono es la porción del plano limitada por rectas que se cortan dos a dos. Clasificación de los polígonos Según el número de lados los polígonos se llaman: Triángulo

Más detalles

Seminario de problemas-eso. Curso Hoja 10

Seminario de problemas-eso. Curso Hoja 10 Seminario de problemas-eso. Curso 011-1. Hoja 10 5. Dado un triángulo cualquiera, demuestra que es posible recubrir el plano con infinitos triángulos iguales al dado, de forma que estos triángulos no se

Más detalles

Soluciones a las actividades

Soluciones a las actividades Soluciones a las actividades BLOQUE I Aritmética. Los números reales. Potencias, radicales y logaritmos Los números reales. Números racionales e irracionales Calcula mentalmente el área de un cuadrado

Más detalles

Guía de ejercicios 2º medio(thales, homotecia,euclides,división interior) Nombre..

Guía de ejercicios 2º medio(thales, homotecia,euclides,división interior) Nombre.. Guía de ejercicios 2º medio(thales, homotecia,euclides,división interior) Nombre.. 1) En la figura, AC // BD, entonces x mide: 2) Con respecto a la figura, donde AB // CD // EF, cuál de las siguientes

Más detalles

Cap. 3: relaciones en un triángulo

Cap. 3: relaciones en un triángulo PROBLEMAS DE TRIGONOMETRÍA (Traducido del libro de Israel M. Gelfand & Mark Saul, Trigonometry ) Cap. 3: relaciones en un triángulo Notas: 1. Los ejercicios marcados con * están resueltos en el libro.

Más detalles

TRABAJO DE SEPTIEMBRE DE MATEMÁTICAS 2º ESO... NOMBRE Y APELLIDOS...

TRABAJO DE SEPTIEMBRE DE MATEMÁTICAS 2º ESO... NOMBRE Y APELLIDOS... TRABAJO DE SEPTIEMBRE DE MATEMÁTICAS 2º ESO... NOMBRE Y APELLIDOS... 1ª Realizar las siguientes divisiones: a) 345,83 : 6 = b) 23 : 0, 5 = c) 0,18 : 0,12 = d) 34,15 : 5 = e) 2,16 : 1,8 = f) 13,02 : 0,25=

Más detalles

ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS

ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS Ejercicio 1 De la función se sabe que tiene un máximo en, y que su gráfica corta al eje OX en el punto de abscisa y tiene un punto de inflexión en el punto

Más detalles

Á REAS Y PERÍMETROS DE FIGURAS SENCILLAS

Á REAS Y PERÍMETROS DE FIGURAS SENCILLAS Pág. 1 Á REAS Y PERÍMETROS DE FIGURAS SENCILLAS Halla el área y el perímetro de las figuras coloreadas de los siguientes ejercicios: 1 a) b) 5 dm 4 cm 2 cm 5 cm 8 cm 2 a) b) 5 m 8 m 17 m 15 m 3 a) b) 5

Más detalles

ACTIVIDADES PROPUESTAS

ACTIVIDADES PROPUESTAS GEOMETRÍA DINÁMICA ACTIVIDADES PROPUESTAS 1. Dibujar un pentágono y trazar sus diagonales. 2. A partir de una circunferencia c y de un punto exterior A, trazar la circunferencia que tiene centro en el

Más detalles

Problema 3 Sea ABC un triángulo acutángulo con circuncentro O. La recta AO corta al lado BC en D. Se sabe que OD = BD = 1 y CD = 1+

Problema 3 Sea ABC un triángulo acutángulo con circuncentro O. La recta AO corta al lado BC en D. Se sabe que OD = BD = 1 y CD = 1+ PRIMER NIVEL PRIMER DÍA Problema 1 a) Es posible dividir un cuadrado de lado 1 en 30 rectángulos de perímetro? b) Supongamos que un cuadrado de lado 1 está dividido en 5 rectángulos de perímetro p. Hallar

Más detalles

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE Pág. 1 PÁGINA 246 REFLEXIONA En la inauguración de la Casa de la Cultura observamos, entre otras, las siguientes figuras: Todas ellas son polígonos. Cuáles crees que son regulares? Explica por qué crees

Más detalles

Piden: Dato: Piden: Dato: Piden: Dato:

Piden: Dato: Piden: Dato: Piden: Dato: SEMANA 1 PRISMAS Y PIRÁMIDE 1. Calcule el número de caras de un prisma donde el número de vértices más el número de aristas es 50. A) 10 B) 0 C) 0 D) 1 E) 18 Sea n el número de lados de la base del prisma:

Más detalles

, calcule el área del triángulo ABN.

, calcule el área del triángulo ABN. Universidad Peruana de iencias plicadas (UP) Perímetros y Áreas ompuestas 1. alcule el área de un triángulo isósceles si el ángulo desigual mide 30º y los lados iguales miden 8m. 30º 8 m 8 m. alcule el

Más detalles

Algunos conceptos básicos de Trigonometría DEFINICIÓN FIGURA OBSERVACIONES. Nombre y definición Figura Característica

Algunos conceptos básicos de Trigonometría DEFINICIÓN FIGURA OBSERVACIONES. Nombre y definición Figura Característica Ángulos. DEFINICIÓN FIGURA OBSERVACIONES Ángulo. Es la abertura formada por dos semirrectas unidas en un solo punto llamado vértice. Donde: α = Ángulo O = Vértice OA = Lado inicial OB = Lado terminal Un

Más detalles

Carrera: Diseño Industrial

Carrera: Diseño Industrial POLÍGONOS 1) Dados los siguientes polígonos se pide determinar cuales de ellos son cóncavos y cuales convexos. Justifique sus respuestas. a) b) c) 2) En los polígonos graficados a continuación indique

Más detalles

*SIMETRAL DE UN TRAZO.: perpendicular en el punto medio.

*SIMETRAL DE UN TRAZO.: perpendicular en el punto medio. *DISTANCIA ENTRE DOS PUNTOS EN EL PLANO: P(x a, y b ). Q(x a, y b ) 2 b + ya yb d= ( ) ( ) 2 x a x *SIMETRAL DE UN TRAZO.: perpendicular en el punto medio. *ALTURA: perpendicular bajada del vértice al

Más detalles

MEDIDAS DE LONGITUDES Y SUPERFICIES_ADAPT (6ºEP)

MEDIDAS DE LONGITUDES Y SUPERFICIES_ADAPT (6ºEP) Adaptación Unidad 11 _La longitud y la superficie. Página 1 LA LONGITUD. Copia en tu cuaderno y aprende. Adaptación Unidad 11 _La longitud y la superficie. Página 2 1. Copia y completa: metros (m) centímetros

Más detalles

Dirección General del Bachillerato Centro de Estudios de Bachillerato 5/3 José Vasconcelos Calderón

Dirección General del Bachillerato Centro de Estudios de Bachillerato 5/3 José Vasconcelos Calderón 1 Problema 1. os piezas cuadradas y tres piezas rectangulares se acomodan para formar un rompecabezas cuadrado como muestra la figura. Si cada una de las dos piezas cuadradas tiene 72cm de perímetro y

Más detalles

SOLUCIONARIO Ángulos en la circunferencia SCUACAC037MT22-A16V1

SOLUCIONARIO Ángulos en la circunferencia SCUACAC037MT22-A16V1 SOLUCIONARIO Ángulos en la circunferencia SCUACAC037MT-A16V1 1 TABLA DE CORRECCIÓN Ítem Alternativa 1 B E Comprensión 3 B 4 B 5 D 6 C 7 E 8 A 9 A 10 B 11 C 1 C 13 B 14 E 15 A 16 D 17 B 18 D Comprensión

Más detalles

EJERCICIOS MÓDULO 6. 1) Graficar aproximadamente cada ángulo dado en un sistema de ejes cartesianos:

EJERCICIOS MÓDULO 6. 1) Graficar aproximadamente cada ángulo dado en un sistema de ejes cartesianos: Seminario Universitario Matemática EJERCICIOS MÓDULO 1) Graficar aproximadamente cada ángulo dado en un sistema de ejes cartesianos: a) 5 b ) 170 c ) 0 d ) 75 e) 10 f ) 50 g ) 0 h ) 87 i ) 08 j ) 700 k

Más detalles

DuocUC MAT 1001 GUÍA DE EJERCICIOS Nº 9 AP LICACIONES DE ECUACIONES DE P RIMER GRADO EVALUACIÓN DE EXP RESIONES ALGEBRAICAS

DuocUC MAT 1001 GUÍA DE EJERCICIOS Nº 9 AP LICACIONES DE ECUACIONES DE P RIMER GRADO EVALUACIÓN DE EXP RESIONES ALGEBRAICAS GUÍA DE EJERCICIOS Nº 9 AP LICACIONES DE ECUACIONES DE P RIMER GRADO EALUACIÓN DE EXP RESIONES ALGEBRAICAS 1. Si al doble de un número se le aumenta 7, resulta ser 5. Determine el número.. El triple de

Más detalles

Unidad 11. Figuras planas

Unidad 11. Figuras planas Unidad 11. Figuras planas Matemáticas Múltiplo 1.º ESO / Resumen Unidad 11 FIGURS LNS OLÍGONOS IRUNFERENI SIMETRÍ Elementos onstrucción lasificación Según el número de lados óncavos y convexos Regulares

Más detalles

MATEMÁTICAS BÁSICAS. Jeanneth Galeano Peñaloza. 13 de agosto de Universidad Nacional de Colombia Sede Bogotá Departamento de Matemáticas

MATEMÁTICAS BÁSICAS. Jeanneth Galeano Peñaloza. 13 de agosto de Universidad Nacional de Colombia Sede Bogotá Departamento de Matemáticas MATEMÁTICAS BÁSICAS Jeanneth Galeano Peñaloza Universidad Nacional de Colombia Sede Bogotá Departamento de Matemáticas 13 de agosto de 2012 Parte I Introducción a la geometría elemental Nociones básicas

Más detalles

MATEMÁTICAS BÁSICAS. Autora: Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano

MATEMÁTICAS BÁSICAS. Autora: Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano MATEMÁTICAS BÁSICAS Autora: Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano Universidad Nacional de Colombia Departamento de Matemáticas Sede Bogotá Enero de 2015 Universidad Nacional de Colombia

Más detalles

POLÍGONOS POLÍGONOS. APM Página 1

POLÍGONOS POLÍGONOS. APM Página 1 POLÍGONOS 1. Polígonos. 1.1. Elementos de un polígono. 1.2. Suma de los ángulos interiores de un polígono. 1.3. Diagonales de un polígono. 1.4. Clasificación de los polígonos. 2. Polígonos regulares. Elementos.

Más detalles

1. Trigonometría 4º ESO-B. Cuaderno de ejercicios. Matemáticas JRM. Nombre y apellidos... INTRODUCCIÓN A LA TRIGONOMETRÍA Página 1

1. Trigonometría 4º ESO-B. Cuaderno de ejercicios. Matemáticas JRM. Nombre y apellidos... INTRODUCCIÓN A LA TRIGONOMETRÍA Página 1 1. Trigonometría 4º ESO-B Cuaderno de ejercicios Matemáticas JRM Nombre y apellidos... INTRODUCCIÓN A LA TRIGONOMETRÍA Página 1 RESUMEN DE OBJETIVOS 1. Razones trigonométricas de un ángulo agudo. OBJETIVO

Más detalles

Reporte de Actividades 15

Reporte de Actividades 15 Reporte de Actividades 15 Profesores: Arturo Ramírez, Alejandro Díaz. Tutores: Paulina Salcedo, Filomeno Alcántara. 1. Sesión del 8 de junio de 2011. 1.1 Resumen de la clase con Alejandro Díaz Barriga.

Más detalles

EDAD. Edad Total Cantidad de alumnos

EDAD. Edad Total Cantidad de alumnos Cuántos vehículos llevaban como mínimo 4 niños? Los vehículos que llevaban como mínimo 4 niños son los que llevaban 4, 5 ó 6 niños, o sea, 34 vehículos (18 + 16). Cuántos vehículos llevaban a lo sumo 2

Más detalles

Cálculo de perímetros y áreas

Cálculo de perímetros y áreas Cálculo de perímetros y áreas 1. Calcula el perímetro de las siguientes figuras planas: 2. Calcula el perímetro de las siguientes figuras geométricas: 3. La rueda de un triciclo tiene 30 cm de radio. Cuántos

Más detalles

TEMA 12: LONGITUDES Y ÁREAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco.

TEMA 12: LONGITUDES Y ÁREAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. 009 TEMA 1: LONGITUDES Y ÁREAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. Manuel González de León. mgdl 01/01/009 TEMA 1: Longitudes y Áreas. TEMA 1: LONGITUDES Y ÁREAS. 1.

Más detalles

República Bolivariana de Venezuela. Ministerio del Poder Popular para la Educación. Unidad Educativa Colegio Roraima. Cátedra Matemática

República Bolivariana de Venezuela. Ministerio del Poder Popular para la Educación. Unidad Educativa Colegio Roraima. Cátedra Matemática República Bolivariana de Venezuela Ministerio del Poder Popular para la Educación Unidad Educativa Colegio Roraima Cátedra Matemática Profesora María Eugenia Benítez 1er año Guía 2 1. Escribir los siguientes

Más detalles

a1 3 siendo a 1 y a 2 las aristas. 2 a a1

a1 3 siendo a 1 y a 2 las aristas. 2 a a1 Semejanza y Trigonometria. 77 Ejercicios para practicar con soluciones Dos rectángulos tienen sus lados proporcionales. Los lados del primero miden 6 y 8 cm respectivamente. Si el perímetro del segundo

Más detalles

Alumna(o): Grupo: N.L

Alumna(o): Grupo: N.L MISCELANEA DE MATEMATICAS FEBRERO CICLO ESCOLAR 2012-2013 Alumna(o): Grupo: N.L Resuelve los siguientes problemas 1.-Mide las dimensiones del siguiente rectángulo. Cuál es el área de la siguiente figura?

Más detalles

congruentes es porque tienen la misma longitud AB = CD y, cuando dos ángulos DEF son congruentes es porque tienen la misma medida

congruentes es porque tienen la misma longitud AB = CD y, cuando dos ángulos DEF son congruentes es porque tienen la misma medida COLEGIO COLMBO BRITÁNICO DEPARTAMENTO DE MATEMÁTICAS GEOMETRÍA NOVENO GRADO PROFESORES: RAÚL MARTÍNEZ, JAVIER MURILLO Y JESÚS VARGAS CONGRUENCIA Y SEMEJANZA Cuando tenemos dos segmentos escribimos AB CD

Más detalles

Nombre del alumno: Profesora Noelia Freita Colegio Pablo Neruda

Nombre del alumno: Profesora Noelia Freita Colegio Pablo Neruda Nombre del alumno: Profesora Noelia Freita Colegio Pablo Neruda Pasos para la resolución de un problema 1 Instancia Final de la Olimpíada Nacional de Matemática 2013 Nivel I A (4to. Año Escolar) PROBLEMA

Más detalles

Ángulos 1º = 60' = 3600'' 1' = 60''

Ángulos 1º = 60' = 3600'' 1' = 60'' Ángulos Definición de ángulo Un ángulo es la región del plano comprendida entre dos semirrectas con origen común. A las semirrectas se las llama lados y al origen común vértice. Medida de ángulos Para

Más detalles

Preguntas Propuestas

Preguntas Propuestas reguntas ropuestas 2 ... olígonos 1. alcule la suma de lados de dos polígonos si se sabe que las sumas de las medidas de sus ángulos interiores difieren en 540º y el número de diagonales del polígono de

Más detalles

IE FINCA LA MESA TALLERR DE COMPETENCIAS BÁSICAS. Nombre: Grado: Costrucciones

IE FINCA LA MESA TALLERR DE COMPETENCIAS BÁSICAS. Nombre: Grado: Costrucciones IE FINCA LA MESA TALLERR DE COMPETENCIAS BÁSICAS Nombre: Grado: 9 5 1. Costrucciones 2. las rectas y puntos notables de un triángulo Sabemos que los polígonos son figuras cerradas planas, de lados rectos,

Más detalles

GUÍA PRÁCTICA DE GEOMETRÍA ÁREA Y PERÍMETRO DE FIGURAS PLANAS. Diseñada por: Esp. María Cristina Marín Valdés

GUÍA PRÁCTICA DE GEOMETRÍA ÁREA Y PERÍMETRO DE FIGURAS PLANAS. Diseñada por: Esp. María Cristina Marín Valdés GUÍA PRÁCTICA DE GEOMETRÍA ÁREA Y PERÍMETRO DE FIGURAS PLANAS Diseñada por: Esp. María Cristina Marín Valdés INSTITUCIÓN EDUCATIVA EDUARDO FERNÁNDEZ BOTERO Área de Matemáticas Amalfi 2011 ÁREA Y PERÍMETRO

Más detalles

CAPÍTULO 9: LONGITUDES Y ÁREAS 1. PERÍMETROS Y ÁREAS DE POLÍGONOS

CAPÍTULO 9: LONGITUDES Y ÁREAS 1. PERÍMETROS Y ÁREAS DE POLÍGONOS 88 CAPÍTULO 9: LONGITUDES Y ÁREAS 1. PERÍMETROS Y ÁREAS DE POLÍGONOS 1.1. Concepto de perímetro y de área de una figura plana El perímetro de una figura plana es la suma de las longitudes de sus lados.

Más detalles

ESPA: Ámbito Científico Tecnológico Nivel I - Módulo II. Unidad 1: Percibimos y representamos los objetos

ESPA: Ámbito Científico Tecnológico Nivel I - Módulo II. Unidad 1: Percibimos y representamos los objetos ESPA: Ámbito Científico Tecnológico Nivel I - Módulo II Unidad 1: Percibimos y representamos los objetos 1.- Descripción de las figuras geométricas en el plano. Clasificación de triángulos y cuadriláteros.

Más detalles

Construcciones. Proporciones. Áreas

Construcciones. Proporciones. Áreas Construcciones Proporciones Áreas Rectángulo y Cometa Dibuja una cometa inscrita en un rectángulo Qué relación hay entre sus áreas respectivas? Cómo cambiará el perímetro de la cometa a medida que E y

Más detalles

(26)2x(3x 4) (1 3x)$(1 +x) = 2

(26)2x(3x 4) (1 3x)$(1 +x) = 2 Resuelve las siguientes ecuaciones ECUACIONES, INECUACIONES Y SISTEMAS. (1)25x 4 29x 2 +4 =0 (2)x 4 5x 2 +4 =0 (3)x 4 a(a +b)x 2 +a 3 b =0 (4)(x 2 5)$(x 2 3) =0 (5)x +2 = 4x +13 (6) x 1 12 = 2 x+1 (7)

Más detalles

La circunferencia es una curva plana y cerrada, cuyos puntos equidistan de otro punto interior llamado centro.

La circunferencia es una curva plana y cerrada, cuyos puntos equidistan de otro punto interior llamado centro. Geometría y Trigonometría Circunferencia 6. CIRCUNFERENCIA 6.1 Definición y notación de una circunferencia La circunferencia es una curva plana y cerrada, cuyos puntos equidistan de otro punto interior

Más detalles

UoL: La geometría del triángulo; figuras, formas y representaciones de objetos LO: Caracterización de los números figurados

UoL: La geometría del triángulo; figuras, formas y representaciones de objetos LO: Caracterización de los números figurados Subject Matemáticas Grade 8 UoL4 El triángulo: un polígono con propiedades especiales Title of LO3 Identificación de los puntos y las líneas notables del triángulo de Grado: 7 aprendizaje relacionado (pre

Más detalles

TRABAJO PARA EXAMEN DE RECUPERACIÓN BIMESTRE 3

TRABAJO PARA EXAMEN DE RECUPERACIÓN BIMESTRE 3 TRABAJO PARA EXAMEN DE RECUPERACIÓN BIMESTRE 3 MATEMÁTICAS I PROFRA. EVA CASTILLO BAÑOS NOMBRE DEL ESTUDIANTE: GRUPO: 1. Qué es un número primo?. Qué es un número compuesto? 3. Escribe los primeros 0 números

Más detalles

ELEMENTOS Y CLASES DE ÁNGULOS

ELEMENTOS Y CLASES DE ÁNGULOS Apellidos: Curso: Grupo: Nombre: Fecha: ELEMENTOS Y CLASES DE ÁNGULOS Dos rectas que se cortan forman 4 regiones llamadas ángulos. Las partes de un ángulo son: los lados: son las semirrectas que lo forman.

Más detalles

2.- Escribe la lectura o escritura de las siguientes fracciones:

2.- Escribe la lectura o escritura de las siguientes fracciones: EDUCACIÓN PREESCOLAR 04PJN0020V EDUCACIÓN PRIMARIA Decroly más que un colegio 04PPR0034O EDUCACION SECUNDARIA 04PES0050Z MARATON DE MATEMÁTICAS 1.- Una fracción está compuesta por un numerador y un denominador.

Más detalles

Triángulos IES BELLAVISTA

Triángulos IES BELLAVISTA Triángulos IES BELLAVISTA Definiciones y notación Un triángulo es la figura plana limitada por tres rectas que se cortan dos a dos. Los puntos de corte se denominan vértices. El triángulo tiene tres lados

Más detalles

1. Progresiones aritméticas

1. Progresiones aritméticas 1 PROGRESIONES ARITMÉTICAS 1 1. Progresiones aritméticas Una progresión aritmética es una sucesión en la que cada término es igual al anterior más un número constante llamado diferencia de la progresión.

Más detalles

GESTIÓN ACADÉMICA GUÍA DIDÁCTICA N

GESTIÓN ACADÉMICA GUÍA DIDÁCTICA N PÁGINA: 1 de 5 Nombres y Apellidos del Estudiante: Docente: Área: Matemáticas Grado: OCTAVO Periodo: Duración: 8 HORAS Asignatura: Geometría ESTÁNDAR: Generalizo procedimientos de cálculo válidos para

Más detalles

MIDDLE SCHOOL GUIA DE ESTUDIO SEGUNDO BIMESTRE Primer Grado. Expresión Algebraica Constante Variable

MIDDLE SCHOOL GUIA DE ESTUDIO SEGUNDO BIMESTRE Primer Grado. Expresión Algebraica Constante Variable MIDDLE SCHOOL GUIA DE ESTUDIO SEGUNDO BIMESTRE Primer Grado MATERIA: Matemáticas 1A MAESTRO: Patricia Cornejo Ramos. I. LENGUAJE ALGEBRAICO. 1. Cuáles son las partes de una expresión algebraica? 2. Qué

Más detalles