RESPONDA LAS PREGUNTAS 1 A 3 DEACUERDO CON LA SIGUIENTE INFORMACIÓN


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "RESPONDA LAS PREGUNTAS 1 A 3 DEACUERDO CON LA SIGUIENTE INFORMACIÓN"

Transcripción

1 RESPONDA LAS PREGUNTAS 1 A 3 DEACUERDO CON LA SIGUIENTE INFORMACIÓN En el siguiente texto, se proporciona información sobre una investigación llevada a cabo, entorno a adicciones: "... en una muestra de 120 indigentes de corta edad [...] se constató que únicamente en el mes anterior a la, 86% de los muchachos habían consumido tabaco, 51% alcohol, 44% marihuana, 11% cocaína y 56% inhalantes. Además 26 de ellos afirmaron haber ingerido drogas farmacéuticas". 1. Un antropólogo, que adelantó una investigación sobre el mismo tema, lee el texto y toma algunos apuntes útiles para su estudio; sin darse cuenta, hace una interpretación errada del texto, esta es: A. más del 30% de los jóvenes examinados habían consumido tabaco y alcohol, un mes antes a la B. un mes antes a la, los 120 jóvenes habían consumido inhalantes o marihuana C. un mes antes a la, el 7% de los jóvenes consumieron inhalantes y alcohol D. el consumo de cocaína, un mes antes a la, fue menor al de otras sustancias, incluso al de drogas farmacéuticas. 2. Tomando como fuente el texto presentado, un periodista ha preparado un artículo en el que afirma que el 30% de los muchachos consumió, un mes antes a la, drogas farmacéuticas. Antes de ser publicado el artículo, se le sugiere que cambie esta afirmación, porque A. no fué la tercera parte de la muestra, la que consumió drogas farmacéuticas un mes antes a la B. estaría incluyendo a 10 personas que no consumieron drogas farmacéuticas un mes antes a la C. estaría incluyendo a 6 personas que no consumieron drogas farmacéuticas un mes antes a la D. no fueron 30 personas las que consumieron drogas farmacéuticas un mes antes a la 3. Profundizando en el estudio, se encontró que la cuarta parte de los jóvenes que consumieron cocaína, eran menores de 10 años mientras que la cuarta parte de los jóvenes que consumieron alcohol eran mayores de 10 años. Estos resultados pueden presentarse al público mediante el gráfico

2 4. Las siguientes gráficas ilustran dos promociones que ofrece un almacén, dependiendo de la forma de pago por compra de sus artículos Según la gráfica que representa la promoción por pago con tarjeta platino, se deduce que la oferta consiste en A. descontar $ al doble del valor de la compra B. hacer un descuento del 20% al monto total de la compra C. pagar $ menos por cada $ en compras D. efectuar el pago de las 4/5 partes, por cada $ del total de la compra 5. Para la señalización de las diferentes vías de transporte, se recorta de láminas de aluminio de variados tamaños y formas, dos tipos de moldes, con las siguientes características La persona encargada del archivo clasifica las facturas para pintura de los moldes tipo I y tipo II, atendiendo a que los moldes tipo II, llevan sus 2/3 partes en amarillo y el resto en negro. De acuerdo con ésto, de las siguientes facturas, la que debe archivar en las correspondientes a moldes tipo II es:

3 6. Uno de los nuevos juegos que ha llegado a la feria es "Ruleta", el cual consiste en lanzar cuatro dardos, en cuatro lanzamientos a un tablero circular mientras gira, desde una distancia aproximada de cuatro metros. Este tablero, está distribuido en sectores iguales con su respectivo puntaje (1,2,ó 4). El ganador será aquel que obtenga el resultado más alto, al sumar los puntajes obtenidos en cada lanzamiento; además, siempre que un dardo caiga, fuera del tablero o justo sobre la línea que divide dos o más sectores, el lanzamiento se repetirá. El siguiente dibujo representa el tablero empleado para el juego Terminado el juego entre Manuel, Carlos, Pedro y Andrés, el administrador del juego, decide anular los lanzamientos, porque uno de ellos hizo trampa al escribir un resultado obtenido. De los siguientes registros, el que señala al jugador que escribió dicho resultado es:

4 RESPONDA LAS PREGUNTAS 7 A 10 DE ACUERDO CON LA SIGUIENTE INFORMACIÓN Un profesor de matemáticas le propone a sus estudiantes realizar el conteo de dígitos de los números que hay desde 1 hasta 999, como lo indica el siguiente ejemplo: Cuántos dígitos hay desde 8 hasta 13? La cantidad de dígitos de los números que hay desde 8 hasta 13 es 10 dígitos. El profesor les da como información que la cantidad de dígitos que hay desde 1 hasta 99 es Para responder a la situación planteada por el profesor, cuatro estudiantes presentaron algunos procedimientos. Si el procedimiento debe ser el más rápido y confiable, cuál de los presentados por los estudiantes escogería? A. contar de 1 en 1 hasta llegar a 999. B. contar de 1 a 9, luego de 10 a 99, por último de 100 a 999 y sumar la cantidad obtenida en cada grupo contado. C. contar cuántos números hay con 1 dígito, con 2 dígitos y con 3 dígitos, multiplicar por 1, por 2 y por 3 respectivamente y luego sumar. D. contar cuántos números hay desde 100 hasta 999; multiplicar por 3, y finalmente sumarle la cantidad de dígitos que hay desde 1 hasta Daniel, luego de hacer el conteo afirma que cada dígito se repite la misma cantidad de veces en los números desde 1 hasta 999, pero uno de sus compañeros comenta que esa afirmación es falsa, porque A. los números de 1 a 999 tienen un orden pero sus dígitos no pueden repetirse la misma cantidad de veces. B. el conteo se hace desde 1 y no desde cero, teniendo al cero mínimo una vez menos. C. la cantidad de números que tienen 2 dígitos es distinta a la cantidad de números que tienen sólo 1 dígito. D. la cantidad de veces que se repite el cero no es la misma con la que se repiten los demás dígitos. 9. Un estudiante le pregunta al profesor si es posible saber cuántos dígitos hay desde -999 hasta -1, conociendo la cantidad que hay desde 1 a 999 sin contar de 1 en 1. Si usted fuera el profesor, le respondería a este estudiante que A. no, porque el conteo sólo es posible hacerlo de manera ascendente, es decir, desde 1 hasta 999. B. sí, porque aunque esté antecedido por el signo menos no afecta el conteo de dígitos. C. sí, porque el orden y el signo no son involucrados en el conteo, siendo así el mismo número de dígitos del conjunto anterior. D. no, porque los dígitos son siempre positivos, entonces -1 no es un dígito. 10. El profesor les pide a sus estudiantes encontrar cuántos dígitos hay de 403 a 702. Cuál de las siguientes maneras de proceder escogería para hacer este conteo? A. escribir los números que hay desde 403 hasta 702 y luego contar los dígitos que tiene cada número. B. restar 402 de 702 y el resultado multiplicarlo por 3. C. contar cuántos números hay desde 403 hasta 702 y multiplicar por 3. D. sumar 702 con 403, el resultado multiplicarlo por 3 y finalmente restarlo de la cantidad de dígitos que hay desde 1 hasta 999.

5 RESPONDA LAS PREGUNTAS 16 A 18 DE ACUERDOCON LA SIGUIENTE INFORMACIÓN A un triángulo equilátero de 75cm de perímetro se le quitan tres triángulos también equiláteros de 5cm de lado, como se muestra en la figura 11. El perímetro de la zona sombreada puede ser calculado así A. a 75 cm le restamos el perímetro de cada uno de los triángulos de 5cm de lado B. a 75 cm le restamos el perímetro de uno de los triángulos de 5cm de lado C. calculamos la medida de cada uno de los lados de la figura sombreada y luego sumamos estos valores D. a cada lado del triángulo ABC le restamos 10cm y luego multiplicamos ese valor por Es posible quitar triángulos equiláteros de las esquinas del triángulo ABC, buscando que el polígono que se forma en el interior sea siempre de 6 lados, sólo si el lado de cada uno de estos triángulos A. es mayor o igual a 0 pero menor que la mitad de la longitud del lado del triángulo ABC B. es mayor que 0 pero menor o igual que la mitad de la longitud del lado del triángulo ABC C. es mayor que 0 pero menor que la mitad de la longitud del lado del triángulo ABC D. está entre 0 y la mitad de la longitud del lado del triángulo ABC 13. Suponga que la longitud de los lados de los triángulos, en las esquinas del triángulo ABC, es exactamente la mitad de la longitud del lado de dicho triángulo, entonces, es cierto afirmar que A. el polígono interior es congruente con cualquiera de los triángulos de las esquinas B. el perímetro del polígono interior es la tercera parte del perímetro del triángulo ABC C. el polígono que se forma en el interior no altera el perímetro del triángulo ABC D. el área del polígono interior es la tercera parte del área del triángulo ABC 14. El siguiente dibujo representa el diseño de una piscina para niños que se quiere construir en un centro vacacional.

6 Para cubrir todas las paredes de la piscina con baldosas rectangulares del mismo tamaño y evitar desperdicios de material, debería usarse la baldosa representada en:

TALLER DE RAZONAMIENTO CUANTITATIVO PROGRAMA DE MATEMATICAS FACULTAD DE CIENCIAS BASICAS

TALLER DE RAZONAMIENTO CUANTITATIVO PROGRAMA DE MATEMATICAS FACULTAD DE CIENCIAS BASICAS TALLER DE RAZONAMIENTO CUANTITATIVO PROGRAMA DE MATEMATICAS FACULTAD DE CIENCIAS BASICAS PRESENTADO POR: ISAÍAS MARÍN - DOCENTE INVESTIGADOR DE MATEMÁTICAS ANDREA VALENCIA - DIRECTORA PROGRAMA DE MATEMÁTICAS

Más detalles

EDAD. Edad Total Cantidad de alumnos

EDAD. Edad Total Cantidad de alumnos Cuántos vehículos llevaban como mínimo 4 niños? Los vehículos que llevaban como mínimo 4 niños son los que llevaban 4, 5 ó 6 niños, o sea, 34 vehículos (18 + 16). Cuántos vehículos llevaban a lo sumo 2

Más detalles

Banco de preguntas de matemáticas

Banco de preguntas de matemáticas Banco de preguntas de matemáticas Los grupos de preguntas que se incluyen en las pruebas de matemáticas son los siguientes: Aleatoriedad: Está en relación con el análisis de datos basado en las características

Más detalles

Soluciones - Tercer Nivel Infantil

Soluciones - Tercer Nivel Infantil SOCIEDAD ECUATORIANA DE MATEMÁTICA ETAPA CLASIFICATORIA "VII EDICIÓN DE LAS OLIMPIADAS DE LA SOCIEDAD ECUATORIANA DE MATEMÁTICA" Soluciones - Tercer Nivel Infantil 01 de abril de 2010 1. En un reloj de

Más detalles

Segundo Nivel 209. Siempre moviéndonos en el sentido de las flechas, de cuántas maneras podemos ir de A hasta P? F

Segundo Nivel 209. Siempre moviéndonos en el sentido de las flechas, de cuántas maneras podemos ir de A hasta P? F Problemas de Graciela errarini y Julia Seveso 4 de mayo 109. La figura está formada por dos triángulos iguales y un rectángulo. l perímetro de es 70 cm. l perímetro del triángulo es 60 cm. = 4 y = 3. uál

Más detalles

Universidad Nacional de Córdoba Escuela Superior de Comercio Manuel Belgrano INGRESO 2012 PRUEBA DE NIVEL MATEMÁTICA

Universidad Nacional de Córdoba Escuela Superior de Comercio Manuel Belgrano INGRESO 2012 PRUEBA DE NIVEL MATEMÁTICA Universidad Nacional de Córdoba Escuela Superior de Comercio Manuel Belgrano INGRESO 2012 PRUEBA DE NIVEL MATEMÁTICA Número de aula TEMA 1 Puntaje Máximo Puntaje Obtenido Firma Primera Parte Segunda Parte

Más detalles

Para dar solución al problema anterior debemos calcular el área, pero qué es el área?

Para dar solución al problema anterior debemos calcular el área, pero qué es el área? Seguimos construyendo nuestro mundo matemático. En esta sesión abordaremos el cálculo de áreas de figuras planas como terrenos, paredes, casas y otros objetos, Cómo vas a lograr esto? Durante esta semana

Más detalles

Examen de Matemáticas (1º E.S.O) UNIDAD 13: ÁREAS Y PERÍMETROS. Grupo: 1ºB Fecha: 11/06/2009

Examen de Matemáticas (1º E.S.O) UNIDAD 13: ÁREAS Y PERÍMETROS. Grupo: 1ºB Fecha: 11/06/2009 I.E.S SAN JOSÉ (CORTEGANA) DEPARTAMENTO DE MATEMÁTICAS Examen de Matemáticas (1º E.S.O) UNIDAD 13: ÁREAS Y PERÍMETROS Nombre y Apellidos: Grupo: 1ºB Fecha: 11/06/009 CALIFICACIÓN: Ejercicio nº 1.- Calcula

Más detalles

Revisora: María Molero

Revisora: María Molero 57 Capítulo 5: INECUACIONES. Matemáticas 4ºB ESO 1. INTERVALOS 1.1. Tipos de intervalos Intervalo abierto: I = (a, b) = {x a < x < b}. Intervalo cerrado: I = [a, b] = {x a x b}. Intervalo semiabierto por

Más detalles

Actividad introductoria: Estudiantes de excursión en el centro de Cartagena identifican figuras planas en inmuebles

Actividad introductoria: Estudiantes de excursión en el centro de Cartagena identifican figuras planas en inmuebles Grado 6 Matemáticas Diferentes formas para expresar la misma medida, el sistema internacional. TEMA: IDENTIFICACIÓN DEL ÁREA Y PERÍMETRO DE ALGUNAS FIGURAS PLANAS Nombre: Grado: Actividad introductoria:

Más detalles

POLÍGONOS

POLÍGONOS POLÍGONOS 8.1.1 8.1.5 Después de estudiar los triángulos y los cuadriláteros, los alumnos ahora amplían su estudio a todos los polígonos. Un polígono es una figura bidimensional, cerrada, formada por tres

Más detalles

26.º OLIMPIADA NACIONAL JUVENIL DE MATEMÁTICA CUARTA RONDA DEPARTAMENTAL NIVEL 1 13 de setiembre de 2014

26.º OLIMPIADA NACIONAL JUVENIL DE MATEMÁTICA CUARTA RONDA DEPARTAMENTAL NIVEL 1 13 de setiembre de 2014 CUARTA RONDA DEPARTAMENTAL NIVEL 1 Nombre y Apellido:............................................... Colegio:............................. Grado:...... Sección:..... Ciudad:................................

Más detalles

GUIA DOS CUADRILATEROS

GUIA DOS CUADRILATEROS PROF.: XIMN STRO NIVL IV MIO GUI OS URILTROS 1) Si el lado de un cuadrado mide m, entonces cuánto mide la altura de un triángulo de base m y cuya área es equivalente al del cuadrado? ) m ) m ) m ) m )

Más detalles

Inecuaciones: Actividades de recuperación.

Inecuaciones: Actividades de recuperación. Inecuaciones: Actividades de recuperación. 1.- Escribe la inecuación que corresponde a los siguientes enunciados: a) El perímetro de un triángulo equilátero es menor que 4. (x = lado del triángulo) b)

Más detalles

GUÍA PRÁCTICA DE GEOMETRÍA ÁREA Y PERÍMETRO DE FIGURAS PLANAS. Diseñada por: Esp. María Cristina Marín Valdés

GUÍA PRÁCTICA DE GEOMETRÍA ÁREA Y PERÍMETRO DE FIGURAS PLANAS. Diseñada por: Esp. María Cristina Marín Valdés GUÍA PRÁCTICA DE GEOMETRÍA ÁREA Y PERÍMETRO DE FIGURAS PLANAS Diseñada por: Esp. María Cristina Marín Valdés INSTITUCIÓN EDUCATIVA EDUARDO FERNÁNDEZ BOTERO Área de Matemáticas Amalfi 2011 ÁREA Y PERÍMETRO

Más detalles

Banco de preguntas de matemáticas IE LUIS PATRON ROSANO BANCO DE PREGUNTAS

Banco de preguntas de matemáticas IE LUIS PATRON ROSANO BANCO DE PREGUNTAS Banco de preguntas de matemáticas IE LUIS PATRON ROSANO BANCO DE PREGUNTAS Los grupos de preguntas que se incluyen en las pruebas de matemáticas son los siguientes: Aleatoriedad: Está en relación con el

Más detalles

PLANIFICACIÓN DE LA SESIÓN DE APRENDIZAJE. Descubrimos los criterios de divisibilidad

PLANIFICACIÓN DE LA SESIÓN DE APRENDIZAJE. Descubrimos los criterios de divisibilidad PLANIFICACIÓN DE LA SESIÓN DE APRENDIZAJE Grado: Primero I. TÍTULO DE LA SESIÓN Duración: horas pedagógicas Descubrimos los criterios de divisibilidad UNIDAD 6 NÚMERO DE SESIÓN 4/ II. APRENDIZAJES ESPERADOS

Más detalles

GESTIÓN ACADÉMICA GUÍA DIDÁCTICA N

GESTIÓN ACADÉMICA GUÍA DIDÁCTICA N PÁGINA: 1 de 5 Nombres y Apellidos del Estudiante: Docente: Área: Matemáticas Grado: OCTAVO Periodo: Duración: 8 HORAS Asignatura: Geometría ESTÁNDAR: Generalizo procedimientos de cálculo válidos para

Más detalles

Área. Existen objetos con superficie curva como las bolas de billar, los globos terráqueos y otros.

Área. Existen objetos con superficie curva como las bolas de billar, los globos terráqueos y otros. Área Elaborado por: Licda. Lilliam Rojas Artavia. Asesora Nacional Matemáticas. GESPRO, DRTE. Fecha: 8 agosto de 016. SUPERFICIES Resumen La medida de superficies se conoce como área. En este documento

Más detalles

Inecuaciones lineales y cuadráticas

Inecuaciones lineales y cuadráticas Inecuaciones lineales y cuadráticas 0.1. Inecuaciones lineales Una inecuación lineal tiene la forma ax + b < 0 ó ax + b > 0 ó ax + b 0 ó ax + b 0. El objetivo consiste en hallar el conjunto solución de

Más detalles

Programa Entrenamiento MT-22

Programa Entrenamiento MT-22 Programa Entrenamiento MT- SOLUCIONARIO Guía de ejercitación avanzada SGUICEN0MT-A6V TABLA DE CORRECCIÓN Guía de ejercitación ÍTEM ALTERNATIVA HABILIDAD D E B 4 C 5 C Comprensión 6 B 7 E Comprensión 8

Más detalles

1. En cuál(es) de las siguientes figuras el triángulo F es siempre semejante con el triángulo G? 63º 31º

1. En cuál(es) de las siguientes figuras el triángulo F es siempre semejante con el triángulo G? 63º 31º PROGRM GRSOS Guía: Semejanza de triángulos jercicios PSU 1. n cuál(es) de las siguientes figuras el triángulo es siempre semejante con el triángulo G? I) G 2º 2º II) 31º 86º G 31º 63º III) G Matemática

Más detalles

Lección 1: Números en teros. Orden, suma y resta

Lección 1: Números en teros. Orden, suma y resta LECCIÓN 1 Lección 1: Números en teros. Orden, suma y resta En esta lección se hará un repaso de los temas abordados en las lecciones 7 y 8 del curso anterior. Los números enteros Como usted recordará,

Más detalles

ESPA: Ámbito Científico Tecnológico Nivel I - Módulo II. Unidad 1: Percibimos y representamos los objetos

ESPA: Ámbito Científico Tecnológico Nivel I - Módulo II. Unidad 1: Percibimos y representamos los objetos ESPA: Ámbito Científico Tecnológico Nivel I - Módulo II Unidad 1: Percibimos y representamos los objetos 1.- Descripción de las figuras geométricas en el plano. Clasificación de triángulos y cuadriláteros.

Más detalles

9 cm. 11 cm. Medidas de los lados de la

9 cm. 11 cm. Medidas de los lados de la ACTIVIDAD 1 En equipos resolver el siguiente problema: 1. Los lados de un cuadrilátero miden 5, 9, 2 y 11 cm, tal como se muestra en la figura; si se realiza una reproducción a escala y el lado correspondiente

Más detalles

Guía 1: PATRONES DE REPETICIÓN

Guía 1: PATRONES DE REPETICIÓN Guía : PATRONES DE REPETICIÓN Un patrón es una sucesión de elementos (orales, gestuales, gráficos, de comportamiento, numéricos) que se construye siguiendo una regla, ya sea de repetición o de recurrencia.

Más detalles

Llamamos área o superficie a la medida de la región interior de un polígono. Figura Geométrica Perímetro Área. p = a + b + c 2 2.

Llamamos área o superficie a la medida de la región interior de un polígono. Figura Geométrica Perímetro Área. p = a + b + c 2 2. GUÍA GEOMETRÍA PERÍMETRO Y AREA DE FIGURAS PLANAS Llamamos área o superficie a la medida de la región interior de un polígono. El perímetro corresponde a la suma de los lados del polígono. Figura Geométrica

Más detalles

PROBLEMAS DE OPTIMIZACIÓN

PROBLEMAS DE OPTIMIZACIÓN 1 PROBLEMAS DE OPTIMIZACIÓN Planteamiento y resolución de los problemas de optimización Se quiere construir una caja, sin tapa, partiendo de una lámina rectangular de cm de larga por de ancha. Para ello

Más detalles

Nombre y Apellido:... Puntaje:... Colegio:... Grado:... Teléfono (L B):... Celular: Número de Cédula de Identidad:...

Nombre y Apellido:... Puntaje:... Colegio:... Grado:... Teléfono (L B):... Celular: Número de Cédula de Identidad:... XXII OLIMPIADA NACIONAL DE MATEMÁTICA RONDA REGIONAL 14 DE AGOSTO DE 2010 - NIVEL 1 PEGÁ TU STICKER AQUÍ Nombre y Apellido:............................................ Puntaje:......... Colegio:.......................................................

Más detalles

ÁREAS DE FIGURAS PLANAS

ÁREAS DE FIGURAS PLANAS 6. ÁREAS DE FIGURAS PLANAS EN ESTA UNIDAD VAS A APRENDER ÁREAS POLÍGONOS RECTÁNGULO CUADRADO PARALELOGRAMO TRIÁNGULO TRAPECIO ROMBO POLÍGONO IRREGULAR FÓRMULA RESOLUCIÓN DE PROBLEMAS CÍRCULO FÓRMULA FIGURAS

Más detalles

Lección 10: División de Polinomios. Dra. Noemí L. Ruiz Limardo 2009

Lección 10: División de Polinomios. Dra. Noemí L. Ruiz Limardo 2009 Lección 10: División de Polinomios Dra. Noemí L. Ruiz Limardo 009 Objetivos de la lección Al finalizar esta lección los estudiantes: Dividirán polinomios de dos o más términos por polinomios de uno y dos

Más detalles

Tema 1: NUMEROS ENTEROS

Tema 1: NUMEROS ENTEROS COLEGIO EL LIMONAR. MÁLAGA DEPARTAMENTO DE MÁTEMÁTICAS RELACIONES DE EJERCICIOS 1º ESO. NÚMEROS ENTEROS Tema 1: NUMEROS ENTEROS Los números enteros (representados por la letra Z), son un conjunto de número

Más detalles

Lección 8: Suma y resta de en teros

Lección 8: Suma y resta de en teros LECCIÓN 8 bajo el nivel del mar, y el buzo B baja a 81 metros bajo el nivel del mar. Cuál de los dos está más cerca de la superficie? d) El saldo de la empresa Caluro, S.A. es de $12 807 en números rojos,

Más detalles

UNIDAD 11 Matemáticas

UNIDAD 11 Matemáticas UNIDAD 11 AR 1 Nombra estos ángulos según sus aberturas: A^ B^ C^ D^............ 2 Observa y colorea. De rojo y azul, dos ángulos adyacentes. De verde, dos ángulos opuestos por el vértice. De amarillo

Más detalles

Ministerio de Educación. PRUEBAS DEL SISTEMA NACIONAL DE EVALUACION Y RENDICIÒN DE CUENTAS SER Ecuador 2008 PRUEBA MODELO

Ministerio de Educación. PRUEBAS DEL SISTEMA NACIONAL DE EVALUACION Y RENDICIÒN DE CUENTAS SER Ecuador 2008 PRUEBA MODELO Ministerio de Educación PRUEBAS DEL SISTEMA NACIONAL DE EVALUACION Y RENDICIÒN DE CUENTAS SER Ecuador 2008 10 mo. EVALUACIÓN DE MATEMATICA PRUEBA MODELO Esta prueba sirve para evaluar las destrezas en

Más detalles

FRACCIONES EQUIVALENTES 3.1.1

FRACCIONES EQUIVALENTES 3.1.1 FRACCIONES EQUIVALENTES 3.. Fracciones que nombran el mismo valor se llaman fracciones equivalentes, como 2 3 = 6 9. Un método para encontrar fracciones equivalentes es usar la identidad multiplicativa

Más detalles

Resolución de problemas mediante ecuaciones.

Resolución de problemas mediante ecuaciones. Resolución de problemas mediante ecuaciones. 1.- La suma de un número con el doble de ese mismo número es 72. Cuál es ese número? 2.- Un señor compró 2 kilos de papas y 3 de tomates. El kilo de papas costaba

Más detalles

Cálculo de perímetros y áreas

Cálculo de perímetros y áreas Cálculo de perímetros y áreas 1. Calcula el perímetro de las siguientes figuras planas: 2. Calcula el perímetro de las siguientes figuras geométricas: 3. La rueda de un triciclo tiene 30 cm de radio. Cuántos

Más detalles

open green road Guía Matemática tutora: Jacky Moreno .co

open green road Guía Matemática tutora: Jacky Moreno .co Guía Matemática PERÍMETRO Y ÁREA tutora: Jacky Moreno.co 1. Perímetro y área de figuras planas Los registros más antiguos que se tienen del campo de la geometría corresponden a la cultura mesopotámica,

Más detalles

Guía del estudiante. Clase 16 Tema: Números racionales - orden en los racionales y representación decimal. Lectura. Colombia Biodiversa Amenazada

Guía del estudiante. Clase 16 Tema: Números racionales - orden en los racionales y representación decimal. Lectura. Colombia Biodiversa Amenazada MATEMÁTICAS Grado Séptimo Bimestre III Semana Número de clases 16-19 Clase 16 Tema: Números racionales - orden en los racionales representación decimal Lectura Colombia Biodiversa Amenazada Colombia ocupa

Más detalles

CONDICIONES DE DILIGENCIAMIENTO DE LA GUÍA DE ESTUDIO

CONDICIONES DE DILIGENCIAMIENTO DE LA GUÍA DE ESTUDIO GUÍA DE ESTUDIO PARA LA RECUPERACIÓN ÁREA: MATEMÁTICAS LOGROS DEL GRADO: 1. Apropiación del lenguaje matemático que le permita al estudiante construir, resolver, reflexionar, argumentar, medir, relacionar,

Más detalles

SOLUCIONARIO GUÍA ESTÁNDAR ANUAL Ondas I: ondas y sus características

SOLUCIONARIO GUÍA ESTÁNDAR ANUAL Ondas I: ondas y sus características SOLUCIONARIO GUÍA ESTÁNDAR ANUAL Ondas I: ondas y sus características SGUICES001CB32-A16V1 Ítem Alternativa Habilidad 1 B Reconocimiento 2 D Reconocimiento 3 E Comprensión 4 C Comprensión 5 A Aplicación

Más detalles

, calcule el área del triángulo ABN.

, calcule el área del triángulo ABN. Universidad Peruana de iencias plicadas (UP) Perímetros y Áreas ompuestas 1. alcule el área de un triángulo isósceles si el ángulo desigual mide 30º y los lados iguales miden 8m. 30º 8 m 8 m. alcule el

Más detalles

SECUENCIA DIDÁCTICA PROPIEDAD DISTRIBUTIVA DE LA MULTIPLICACIÓN RESPECTO DE LA SUMA Y LA RESTA

SECUENCIA DIDÁCTICA PROPIEDAD DISTRIBUTIVA DE LA MULTIPLICACIÓN RESPECTO DE LA SUMA Y LA RESTA 1 Matemática. Dirección de Nivel Secundario. Ministerio de Educación, Cultura, Ciencia y Tecnología del Chaco. SECUENCIA DIDÁCTICA PROPIEDAD DISTRIBUTIVA DE LA MULTIPLICACIÓN RESPECTO DE LA SUMA Y LA RESTA

Más detalles

CONJUNTOS NUMÉRICOS. La noción de número es tan antigua como el hombre mismo ya que son necesarios para resolver situaciones de la vida diaria.

CONJUNTOS NUMÉRICOS. La noción de número es tan antigua como el hombre mismo ya que son necesarios para resolver situaciones de la vida diaria. CONJUNTOS NUMÉRICOS La noción de número es tan antigua como el hombre mismo ya que son necesarios para resolver situaciones de la vida diaria. Por ejemplo, usamos números para contar una determinada cantidad

Más detalles

Guía de Ejercicios Funciones. Debes copiar cada enunciado en tu cuaderno y realizar el desarrollo, indica la respuesta correcta en la guía 2-1-

Guía de Ejercicios Funciones. Debes copiar cada enunciado en tu cuaderno y realizar el desarrollo, indica la respuesta correcta en la guía 2-1- Colegio Raimapu Departamento de Matemática Guía de Ejercicios Funciones Nombre del Estudiante: IV Medio Debes copiar cada enunciado en tu cuaderno realizar el desarrollo, indica la respuesta correcta en

Más detalles

Unidad 8 Áreas y Volúmenes

Unidad 8 Áreas y Volúmenes Unidad 8 Áreas y Volúmenes PÁGINA 132 SOLUCIONES Unidades de medida. Pasa a centímetros cuadrados las siguientes cantidades. a) b) c) Pasa a metros cúbicos las siguientes unidades. a) b) c) Cuántos litros

Más detalles

Los números enteros Z = {,-3, -2, -1, 0, 1, 2, 3, }

Los números enteros Z = {,-3, -2, -1, 0, 1, 2, 3, } Los números enteros La unión de los números naturales y los enteros negativos forma el conjunto de los números enteros, que se designa con la palabra Z. Está constituido por infinitos elementos y se representan

Más detalles

Carrera: Diseño Industrial

Carrera: Diseño Industrial POLÍGONOS 1) Dados los siguientes polígonos se pide determinar cuales de ellos son cóncavos y cuales convexos. Justifique sus respuestas. a) b) c) 2) En los polígonos graficados a continuación indique

Más detalles

1. Cuando en un grupo cada persona abraza a otra del grupo una sola vez, el número total de abrazos, a, se calcula mediante la expresión.

1. Cuando en un grupo cada persona abraza a otra del grupo una sola vez, el número total de abrazos, a, se calcula mediante la expresión. NOMBRE: GRADO: FECHA: TÉCNICA: preguntas de selección múltiple tipo I. Las preguntas de este tipo constan de un enunciado y 4 opciones de respuesta, de las cuales deberás seleccionar la que consideres

Más detalles

Lección 2. Conversión de fracciones en decimales. Don Angel necesita algunas tiras de madera para hacer una silla y tiene una tabla como ésta:

Lección 2. Conversión de fracciones en decimales. Don Angel necesita algunas tiras de madera para hacer una silla y tiene una tabla como ésta: Conversión de fracciones en decimales Lección Don Angel necesita algunas tiras de madera para hacer una silla y tiene una tabla como ésta: Cortó la tabla en 0 tiras del mismo tamaño: Cada tira es 0 ó 0.

Más detalles

Por favor respete derechos de autor, haga uso correcto de ésta guía, siempre indicando el sitio y el autor LOS NÚMEROS ENTEROS

Por favor respete derechos de autor, haga uso correcto de ésta guía, siempre indicando el sitio y el autor LOS NÚMEROS ENTEROS 1 Por favor respete derechos de autor, haga uso correcto de ésta guía, siempre indicando el sitio y el autor Autor: Lic. ELISABETH ECHAVARRIA R. LOS NÚMEROS ENTEROS Los Números Enteros están conformados

Más detalles

ACTIVIDADES INCLUIDAS EN LA PROPUESTA DIDÁCTICA: DE REFUERZO

ACTIVIDADES INCLUIDAS EN LA PROPUESTA DIDÁCTICA: DE REFUERZO Pág. 1 ENUNCIADOS 1 Piensa, tantea y encuentra una solución para estas ecuaciones: a) 5 5 b) 5 1 c) 1 4 d) 1 e) 1 f ) 6 1 Despeja la incógnita y encuentra la solución: a) 6 b) 4 c) 7 d) 7 4 Resuelve las

Más detalles

= 310 (1 + 5) : 2 2 = = = 12 ( 3) ( 5) = = 2 = ( 4) + ( 20) + 3 = = 21

= 310 (1 + 5) : 2 2 = = = 12 ( 3) ( 5) = = 2 = ( 4) + ( 20) + 3 = = 21 Unidad I, NÚMEROS NATURALES Y ENTEROS A continuación se enuncian las claves de cada pregunta hechas por mí (César Ortiz). Con esto, asumo cualquier responsabilidad, entiéndase por si alguna solución está

Más detalles

1. ESQUEMA - RESUMEN Página EJERCICIOS DE INICIACIÓN Página EJERCICIOS DE DESARROLLO Página EJERCICIOS DE REFUERZO Página 25

1. ESQUEMA - RESUMEN Página EJERCICIOS DE INICIACIÓN Página EJERCICIOS DE DESARROLLO Página EJERCICIOS DE REFUERZO Página 25 1. ESQUEMA - RESUMEN Página. EJERCICIOS DE INICIACIÓN Página 6. EJERCICIOS DE DESARROLLO Página 17 5. EJERCICIOS DE REFUERZO Página 5 1 1. ESQUEMA - RESUMEN Página 1.1. EXPRESIONES ALGEBRAICAS. 1.. VALOR

Más detalles

1 Ángulos en las figuras planas

1 Ángulos en las figuras planas Unidad 11. Elementos de geometría plana 1 Ángulos en las figuras planas Página 139 1. Cinco de los ángulos de un heágono irregular miden 147, 101, 93, 1 y 134. Halla la medida del seto ángulo. Los seis

Más detalles

Guía de Ejercicios Estadística. Nombre del Estudiante:

Guía de Ejercicios Estadística. Nombre del Estudiante: Colegio Raimapu Departamento de Matemática Guía de Ejercicios Estadística Nombre del Estudiante: V Medio Debes copiar cada enunciado en tu cuaderno y realizar el desarrollo, indica la respuesta correcta

Más detalles

Matemáticas II Magisterio (Primaria) Curso Problemas de repaso

Matemáticas II Magisterio (Primaria) Curso Problemas de repaso Matemáticas II Magisterio (rimaria) urso 2013-2014 1. alcula la medida del ángulo a de la figura. roblemas de repaso 116 105 a Sol: a = 49. 2. Sabiendo que los puntos, y R están sobre una circunferencia

Más detalles

Funciones y Condicionales Introducción a la Programación

Funciones y Condicionales Introducción a la Programación Funciones y Condicionales Introducción a la Programación Departamento de Ciencias e Ingeniería de la Computación Pontificia Universidad Javeriana Santiago de Cali 2011-2 Resumen En el mundo existen gran

Más detalles

PRISMAS VOLUMEN Y ÁREA DE SUPERFICIE y 9.1.2

PRISMAS VOLUMEN Y ÁREA DE SUPERFICIE y 9.1.2 PRISMAS VOLUMEN Y ÁREA DE SUPERFICIE 9.1.1 y 9.1.2 VOLUMEN DE UN PRISMA El volumen es un concepto tridimensional. Mide la cantidad de espacio interior de una figura tridimensional basado en una unidad

Más detalles

UNIDAD 8 INECUACIONES. Objetivo general.

UNIDAD 8 INECUACIONES. Objetivo general. 8. 1 UNIDAD 8 INECUACIONES Objetivo general. Al terminar esta Unidad resolverás inecuaciones lineales y cuadráticas e inecuaciones que incluyan valores absolutos, identificarás sus conjuntos solución en

Más detalles

Primaria Sexto Grado Matemáticas (con QuickTables)

Primaria Sexto Grado Matemáticas (con QuickTables) Primaria Sexto Grado Matemáticas (con QuickTables) Este curso cubre los conceptos mostrados a continuación. El estudiante navega por trayectos de aprendizaje basados en su nivel de preparación. Usuarios

Más detalles

Nos organizamos para leer obras interesantes

Nos organizamos para leer obras interesantes Quinto GRADO - Unidad 2 - Sesión 06 Nos organizamos para leer obras interesantes En esta sesión se espera que los niños y las niñas aprendan a resolver problemas usando estrategias de cálculo de divisiones

Más detalles

FICHA DE TRABAJO Nº 5

FICHA DE TRABAJO Nº 5 FICHA DE TRABAJO Nº 5 Nombre Nº orden Bimestre II 3ºgrado - sección A B C D Ciclo III Fecha: - 05-12 Área Matemática Tema RAZONES Y PROPORCIONES RAZÓN.- Es una comparación entre 2 cantidades. Dicha comparación

Más detalles

1) El primer paso es ubicarse en la celda donde quiere que aparezca el resultado de la función, la celda D18.

1) El primer paso es ubicarse en la celda donde quiere que aparezca el resultado de la función, la celda D18. Función Lógica SI - SI ANIDADOS Los SI ANIDADOS, consiste en la utilización de la función lógica Si, pero aplicando más de una condición o prueba lógica. A partir de dichas condiciones se pueden plantear

Más detalles

UNIDAD 6. Estadística TABLAS DE FRECUENCIAS, GRÁFICOS DE BARRAS Y POLÍGONOS DE FRECUENCIAS

UNIDAD 6. Estadística TABLAS DE FRECUENCIAS, GRÁFICOS DE BARRAS Y POLÍGONOS DE FRECUENCIAS Matemática UNIDAD 6. Estadística 1 Medio GUÍA N 5 TABLAS DE FRECUENCIAS, GRÁFICOS DE BARRAS Y POLÍGONOS DE FRECUENCIAS Cada día aparecen gráficos o datos, por ejemplo en la prensa o en televisión. Quién

Más detalles

POTENCIAS. MÚLTIPLOS Y DIVISORES. MÁXIMO COMÚN DIVISOR Y MÍNIMO COMÚN MÚLTIPLO.

POTENCIAS. MÚLTIPLOS Y DIVISORES. MÁXIMO COMÚN DIVISOR Y MÍNIMO COMÚN MÚLTIPLO. 1. LOS NÚMEROS NATURALES POTENCIAS. MÚLTIPLOS Y DIVISORES. MÁXIMO COMÚN DIVISOR Y MÍNIMO COMÚN MÚLTIPLO. 2. LOS NÚMEROS ENTEROS. VALOR ABSOLUTO DE UN NÚMERO ENTERO. REPRESENTACIÓN GRÁFICA. OPERACIONES.

Más detalles

Examen Canguro Matemático Mexicano Nivel Cadete Olímpico

Examen Canguro Matemático Mexicano Nivel Cadete Olímpico Examen Canguro Matemático Mexicano Nivel Cadete Olímpico Instrucciones: En la hoja de respuestas, llena el círculo que corresponda a la respuesta correcta para cada pregunta. Si en una misma pregunta aparecen

Más detalles

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas 1. Fracciones Una fracción es una expresión del tipo a b, donde a y b son números naturales llamados numerador y denominador, respectivamente. 1.1. Interpretación de una fracción a) Fracción como parte

Más detalles

MATEMÁTICA: TRABAJO PRÁCTICO 2. Funciones. 1) Carlos está enfermo. Veamos la gráfica de la evolución de su temperatura.

MATEMÁTICA: TRABAJO PRÁCTICO 2. Funciones. 1) Carlos está enfermo. Veamos la gráfica de la evolución de su temperatura. ILSE-2º Año- MATEMÁTICA: TRABAJO PRÁCTICO 2 Funciones 1) Carlos está enfermo. Veamos la gráfica de la evolución de su temperatura. a) Cuántos días ha estado enfermo el paciente? (Se considera normal una

Más detalles

Sentido Numérico Números Enteros

Sentido Numérico Números Enteros Sentido Numérico Números Enteros I CAN DO THIS! Nombre 1.1 Puedo leer y escribir números enteros hasta los millones. 1.2 Puedo ordenar y comparar números enteros y decimales hasta dos espacios decimales

Más detalles

3. A partir de las características observadas en las figuras construidas, completar la tabla siguiente:

3. A partir de las características observadas en las figuras construidas, completar la tabla siguiente: Plan de clase (1/3) Escuela: Fecha: Profr. (a): Curso: Matemáticas 7 Eje temático: FE y M Contenido: 7.3.4 Construcción de polígonos regulares a partir de distintas informaciones (medida de un lado, del

Más detalles

SOLUCIONARIO Ángulos en la circunferencia SCUACAC037MT22-A16V1

SOLUCIONARIO Ángulos en la circunferencia SCUACAC037MT22-A16V1 SOLUCIONARIO Ángulos en la circunferencia SCUACAC037MT-A16V1 1 TABLA DE CORRECCIÓN Ítem Alternativa 1 B E Comprensión 3 B 4 B 5 D 6 C 7 E 8 A 9 A 10 B 11 C 1 C 13 B 14 E 15 A 16 D 17 B 18 D Comprensión

Más detalles

GUIA FACIL PARA EL CALCULO DEL ESTADO DE CUENTA BANCO DE FINANZAS S.A.

GUIA FACIL PARA EL CALCULO DEL ESTADO DE CUENTA BANCO DE FINANZAS S.A. GUIA FACIL PARA EL CALCULO DEL ESTADO DE CUENTA BANCO DE FINANZAS S.A. 1. Calculo del pago de contado: a. Al saldo anterior. b. Súmele los consumos, débitos del mes y los intereses generados en el corte

Más detalles

Precio de la gasolina regular (colones por litro, promedio anual)

Precio de la gasolina regular (colones por litro, promedio anual) CATÁLOGO MATERIALES DE APOYO PARA BACHILLERATO POR MADUREZ Educación Abierta 800 700 600 500 400 300 200 100 0 Pantallazo Precio de la gasolina regular (colones por litro, promedio anual) 2009 2010 2011

Más detalles

MATEMÁTICAS BÁSICAS. Jeanneth Galeano Peñaloza. 13 de agosto de Universidad Nacional de Colombia Sede Bogotá Departamento de Matemáticas

MATEMÁTICAS BÁSICAS. Jeanneth Galeano Peñaloza. 13 de agosto de Universidad Nacional de Colombia Sede Bogotá Departamento de Matemáticas MATEMÁTICAS BÁSICAS Jeanneth Galeano Peñaloza Universidad Nacional de Colombia Sede Bogotá Departamento de Matemáticas 13 de agosto de 2012 Parte I Introducción a la geometría elemental Nociones básicas

Más detalles

TEMA 4: LAS FRACCIONES

TEMA 4: LAS FRACCIONES TEMA : LAS FRACCIONES Hasta ahora has trabajado con números naturales, enteros y decimales, pero sigue habiendo situaciones que no podemos expresar con estos números, por ejemplo, cuando decimos: Medio

Más detalles

CAPÍTULO 9: LONGITUDES Y ÁREAS 1. PERÍMETROS Y ÁREAS DE POLÍGONOS

CAPÍTULO 9: LONGITUDES Y ÁREAS 1. PERÍMETROS Y ÁREAS DE POLÍGONOS 88 CAPÍTULO 9: LONGITUDES Y ÁREAS 1. PERÍMETROS Y ÁREAS DE POLÍGONOS 1.1. Concepto de perímetro y de área de una figura plana El perímetro de una figura plana es la suma de las longitudes de sus lados.

Más detalles

Reconocimiento de la integral a partir del método de los trapecios.

Reconocimiento de la integral a partir del método de los trapecios. Grado 11 Matematicas - Unidad 4 Cómo hallo el área de superficies curvas? Bienvenidos al cálculo integral Tema Reconocimiento de la integral a partir del método de los trapecios. Nombre: Curso: En muchas

Más detalles

2.- Escribe la lectura o escritura de las siguientes fracciones:

2.- Escribe la lectura o escritura de las siguientes fracciones: EDUCACIÓN PREESCOLAR 04PJN0020V EDUCACIÓN PRIMARIA Decroly más que un colegio 04PPR0034O EDUCACION SECUNDARIA 04PES0050Z MARATON DE MATEMÁTICAS 1.- Una fracción está compuesta por un numerador y un denominador.

Más detalles

MATEMÁTICAS BÁSICAS. Autora: Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano

MATEMÁTICAS BÁSICAS. Autora: Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano MATEMÁTICAS BÁSICAS Autora: Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano Universidad Nacional de Colombia Departamento de Matemáticas Sede Bogotá Enero de 2015 Universidad Nacional de Colombia

Más detalles

Soluciones Primer Nivel - 5º Año de Escolaridad

Soluciones Primer Nivel - 5º Año de Escolaridad Primer Nivel - 5º Año de Escolaridad Problema 1. La diagonal del cuadrado mide cm. El cuadrado se descompone en cuatro triángulos rectángulos cuyos catetos miden 1cm. Las áreas de estos triángulos miden

Más detalles

Normas Estatales Fundamentales Comunes

Normas Estatales Fundamentales Comunes Dando sentido a las Normas Estatales Fundamentales Comunes Una guía práctica para maestros y padres Lakeshore S8220 Normas Estatales Fundamentales Comunes: Preguntas frecuentes Qué son las Normas Estatales

Más detalles

FÓRMULAS - FIGURAS PLANAS

FÓRMULAS - FIGURAS PLANAS SUPERFICIES (Círculo F. circulares) 1 FÓRMULAS - FIGURAS PLANAS L. circunferencia = 2 r = d 2 r x n o L. del arco = 360 o r d n o distancia = L x n o vueltas r = L : 2 d = L : n o vueltas = distancia :

Más detalles

Cálculos matemáticos POR EL MÉTODO DE RADIACIONES

Cálculos matemáticos POR EL MÉTODO DE RADIACIONES Cálculos matemáticos POR EL MÉTODO DE RADIACIONES Para realizar este cálculo es necesario contar con la hoja de registro que contiene las distancias y los azimuts de la poligonal datos recabados durante

Más detalles

Guía del estudiante. 9 Hm. 8 Hm

Guía del estudiante. 9 Hm. 8 Hm MATEMÁTICAS Grado Séptimo Bimestre II Semana 5 Número de clases 21-25 Clase 21 Tema: Perímetro Actividad 1 Halle el perímetro del terreno del lote que se representa en la siguiente figura. Utilice el espacio

Más detalles

OPORTUNIDADES PARA APRENDER- FORMA A PROFESORES DE MATEMÁTICA 5TO GRADO DE EDUCACIÓN SECUNDARIA

OPORTUNIDADES PARA APRENDER- FORMA A PROFESORES DE MATEMÁTICA 5TO GRADO DE EDUCACIÓN SECUNDARIA OPORTUNIDADES PARA APRENDER- FORMA A PROFESORES DE MATEMÁTICA 5TO GRADO DE EDUCACIÓN SECUNDARIA (Información que debe llenar el examinador aquí y en la hoja de respuestas) Código Modular del Centro Educativo

Más detalles

I Eliminatoria Separemos la figura así: Considere la figura: el área sonbreada en esta figura es 7,5. Ahora considere la figura:

I Eliminatoria Separemos la figura así: Considere la figura: el área sonbreada en esta figura es 7,5. Ahora considere la figura: 1. Determine el área sombreada en la figura adjunta 11 (a) 15 (b) 16 (c) 17 (d) 18 Separemos la figura así: Considere la figura: el área sonbreada en esta figura es 7,5. Ahora considere la figura: 6 Su

Más detalles

EJERCICIOS MÓDULO 4. Geometría plana. 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9?

EJERCICIOS MÓDULO 4. Geometría plana. 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9? Seminario Universitario Matemática EJERCICIOS MÓDULO 4 Geometría plana 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9? ) Cuántos lados tiene un polígono en el cual la suma de

Más detalles

Taller especial de capacitación de los profesores del 4º Ciclo

Taller especial de capacitación de los profesores del 4º Ciclo Taller especial de capacitación de los profesores del 4º Ciclo Este taller fue preparado para satisfacer la inquietud de los docentes que solicitaron más capacitación Olimpiada Akâ Porâ Olimpiada Nacional

Más detalles

SEMRM XIX OLIMPIADA MATEMÁTICA NACIONAL MURCIA Fase Nacional. Por favor, RELLENA ESTA HOJA CON LETRAS MAYÚSCULAS y

SEMRM XIX OLIMPIADA MATEMÁTICA NACIONAL MURCIA Fase Nacional. Por favor, RELLENA ESTA HOJA CON LETRAS MAYÚSCULAS y Fase Nacional Apellidos: Nombre: Centro: Comunidad Autónoma: NOTA: Por favor, RELLENA ESTA HOJA CON LETRAS MAYÚSCULAS y No pongas nada en la casilla RECUERDA LAS INSTRUCCIONES: - No pongas el nombre ni

Más detalles

Juega con los números Página 11

Juega con los números Página 11 Página 11 Pág. 1 14 Busca el menor número de seis cifras cuya división entre 7 es exacta. Busca también el mayor. El menor número de seis cifras es 100 000. 100 000 : 7 = 14 285, El menor número de seis

Más detalles

Evidentemente, la superficie es un triángulo rectángulo de base 1 y altura también la unidad, por tanto su área es 1/2.

Evidentemente, la superficie es un triángulo rectángulo de base 1 y altura también la unidad, por tanto su área es 1/2. LA INTEGRAL DEFINIDA En los dos temas anteriores se ha hecho el estudio de las primitivas de una función, descubriendo distintos procedimientos para el cálculo de primitivas, es decir, se han encontrado

Más detalles

Jugamos Lanza al mil y contamos agrupando

Jugamos Lanza al mil y contamos agrupando CUARTO GRADO - UNIDAD 1 - SESIÓN 08 Jugamos Lanza al mil y contamos agrupando En esta sesión se espera que las niñas y los niños aprendan a expresar números de cuatro cifras mediante agrupaciones y usando

Más detalles

Lección 2: Notación exponencial

Lección 2: Notación exponencial GUÍA DE MATEMÁTICAS III Lección 2: Notación exponencial En la lección anterior hemos visto cómo trabajar con números reales y cómo para facilitar el trabajo con ellos es conveniente utilizar aproximaciones,

Más detalles

Preparación para Álgebra 1 de Escuela Superior

Preparación para Álgebra 1 de Escuela Superior Preparación para Álgebra 1 de Escuela Superior Este curso cubre los conceptos mostrados a continuación. El estudiante navega por trayectos de aprendizaje basados en su nivel de preparación. Usuarios institucionales

Más detalles

Abajo está una mezcla de expresiones racionales. Haga la operación indicada y simplifique su solución, si puede.

Abajo está una mezcla de expresiones racionales. Haga la operación indicada y simplifique su solución, si puede. Unidad 1 Llendo a campar: D írculos 1 D-8. bajo está una mezcla de epresiones racionales. Haga la operación indicada simplifique su solución, si puede. 6 + 8 + 1 + 6 5 + 10 + 8 + + 5 ( + 1) d) + + 5 10

Más detalles

MATEMÁTICAS (GEOMETRÍA)

MATEMÁTICAS (GEOMETRÍA) COLEGIO COLOMBO BRITÁNICO Formación en la Libertad y para la Libertad MATEMÁTICAS (GEOMETRÍA) GRADO:7 O DOCENTE: Nubia E. Niño C. FECHA: 8 / 07 / 15 Guía Didáctica 3-2 Desempeños: * Reconoce y clasifica

Más detalles

Fecha: Grado y grupo: No. de Lista:

Fecha: Grado y grupo: No. de Lista: MATEMÁTICAS TERCER AÑO GUÍA PLANEA Nombre del(a) alumno(a): Fecha: Grado y grupo: No. de Lista: INSTRUCCIONES: Deberás bajar e imprimir el archivo de la guía.- Lee y contesta correctamente la guía, para

Más detalles

III: Geometría para maestros. Capitulo 1: Figuras geométricas

III: Geometría para maestros. Capitulo 1: Figuras geométricas III: Geometría para maestros. Capitulo : Figuras geométricas SELECCIÓN DE EJERCICIOS RESUELTOS SITUACIONES INTRODUCTORIAS En un libro de primaria encontramos este enunciado: Dibuja un polígono convexo

Más detalles