TEMA 1 LOS NÚMEROS REALES


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TEMA 1 LOS NÚMEROS REALES"

Transcripción

1 TEMA 1 LOS NÚMEROS REALES 1.1 LOS NÚMEROS REALES.-LA RECTA REAL Los NÚMEROS RACIONALES: Se caracterizan porque pueden expresarse: En forma de fracción, es decir, como cociente b a de dos números enteros: a, y b Z con b 0 En forma decimal: Con un número entero o bien con una expresión decimal finita o periódica. El conjunto de todos los números racionales se designa por Q. PASAR DE FRACCIÓN A DECIMAL Para obtener la expresión decimal de una fracción, se efectúa la división del numerador entre el denominador. Ejemplos: PASAR DE DECIMAL A FRACCIÓN nº sin coma d. exacto = 1 seguido de tan tos 0 como cifras decimales tenga nº sin coma y sin arquito su parte no periódica d. periódico puro = nº formado por tan tos9 como cifras tenga el periodo

2 d. p. mixto = nº con nº sin coma y sin arquito su parte no periódica sin coma tan tos 9 como cifras tenga el periodo seguido de tan tos 0 como cifras tenga el anteperiodo Los NÚMEROS IRRACIONALES: Se caracterizan porque: No pueden expresarse en forma de fracción. Su expresión decimal tiene infinitas cifras y no es periódica. El conjunto de todos los números irracionales se designa por I. Ejemplos: 4 Raíces no exactas de números enteros: 2 ; 5 ; 3 8 Expresiones decimales infinitas no periódicas que presentan algún tipo de regularidad: ; Números importantes como: π = 3' ; e = 2' ; Φ = = 1' Los NÚMEROS REALES: Tanto los números racionales como los irracionales se llaman números reales. Se caracterizan, por lo tanto, por admitir una expresión entera o decimal (exacta, periódica o no periódica). El conjunto de los números reales se designa por R.

3 Con los números reales podemos realizar las mismas operaciones que hacíamos con los números racionales: sumar, restar, multiplicar, dividir (salvo por el cero), y elevar a un exponente entero, y se siguen manteniendo las mismas propiedades (libro S.M. pág. 14, en el margen). También podemos extraer raíces de cualquier índice (salvo raíces de índice par de números negativos) y el resultado sigue siendo un número real. Para realizar estas operaciones se pueden utilizar aproximaciones tomando el número de cifras decimales que se considere apropiado. El resultado será una aproximación del valor real y se cometerá un error cuya magnitud dependerá del número considerado de cifras decimales. LA RECTA REAL Los números reales se representan en la recta graduada: Los que son racionales se pueden dibujar de forma exacta (usando regla y compás) Representación de naturales, enteros o decimales exactos Ejemplo: 2; 3,47 Decimal periódico: Pueden expresarse en forma de fracción y representar la fracción (Se divide cada unidad en tantas partes como indique el denominador y se toman tantas como tenga el numerador) Ejemplo : 0, = 5/6

4 Ejemplo: 11/6 = 1 + 5/6 (Se divide igual pero la unidad entre el 1 y el 2) Ejemplo: -11/6 = -1 5/6 (Se divide igual pero la unidad entre el 1 y el 2) Decimal no periódico: Irracionales No obstante, en la recta numérica hay infinitos puntos no ocupados por números racionales. A cada uno de estos puntos le corresponde un número irracional: Solo algunos números irracionales pueden ser representados sobre la recta graduada con regla y compás: los radicales cuadráticos (, 3, 5, 6, 2 ). Se pueden representar construyendo triángulos rectángulos (Se utiliza el teorema de Pitágoras donde la hipotenusa es lo que queremos dibujar) Ejemplo: 10 Ejemplos: Representa 5 ; 14 ; 18 ; 27 Si un número irracional viene dado por su expresión decimal, podemos representarlo, de forma aproximada: Ejemplo: 3, Podemos afinar tanto como queramos. Los números reales pueden ser representados en la recta real, según los casos, de forma exacta, o bien con tanta aproximación como queramos. Los números reales llenan la recta numérica (para cada nº real hay un solo punto de la recta que lo representa y cada punto de la recta es representante de un solo nº real) por eso se la llama RECTA REAL.

5 1.2 ORDENACIÓN DE NÚMEROS REALES. DESIGUALDADES.- Si tenemos varios números reales representados sobre la recta, cuanto más pequeño sea el número real, más a la izquierda estará representado sobre la recta. Entre varios números reales expresados en forma decimal, es menor el que tenga menor la primera cifra distinta de mayor orden. ) ) Ejemplo: Ordena de menor a mayor: 7'512 ; 7' ; 7'512 ; 7' ; 7' 5 Entre dos números reales hay infinitos números reales (el valor media aritmética de los dos es real y está entre ambos). 1.3 INTERVALOS, SEMIRECTAS Y ENTORNOS.- La relación de orden permite definir algunos subconjuntos muy utilizados de números reales que tienen una interpretación sencilla en la recta real: Nota: Si queremos nombrar el conjunto de números reales formado por dos o más de estos intervalos, se utiliza el signo (unión) entre ellos. Si queremos nombrar el conjunto de números reales comunes a dos o más de estos intervalos, se utiliza el signo (intersección) entre ellos.

6 ENTORNOS: Se llama entorno de centro a y radio r y se designa E(a,r) al conjunto de puntos (a r, a+r) Se llama entorno reducido de centro a y radio r y se designa E*(a,r) al entorno E(a,r) menos el centro(a): E*(a,r) = (a r, a + r) {a} 1.4 VALOR ABSOLUTO DE UN NÚMERO REAL El valor absoluto de un número real, a, es la distancia (medida en unidades) desde el punto de la recta real que representa al número a hasta el que representa al 0. Se calcula: con el propio número a, si es positivo, o su opuesto, -a, si a es negativo: a a = a si si a 0 a < 0 (Es decir, sale siempre un número positivo). El valor absoluto de un número coincide con el de su opuesto: a = a DISTANCIA ENTRE DOS PUNTOS DE LA RECTA REAL La distancia entre dos puntos a y b es su diferencia en valor absoluto: Ejemplo: La distancia entre -2 y 5 es: 5 ( 2) = 7 = 7 unidades. d( a, b) = b a PROPIEDADES DEL VALOR ABSOLUTO: a 0 para cualquier nº a. a b = a b a + b a + b (Propiedad triangular). 1.5 EXPRESIÓN DECIMAL DE LOS NÚMEROS REALES. VALORES APROXIMADOS.ERRORES Y COTAS DEL ERROR. APROXIMACIÓN DECIMAL Para operar con los números que tienen su expresión decimal con infinitas cifras decimales se utilizan sus aproximaciones decimales, que son números enteros o decimales exactos o fracciones (y por tanto racionales) con valores muy próximos al de los números en cuestión.

7 Aproximar un número real es sustituirlo por otro racional (ya sea entero o decimal exacto o fracción), con valor muy próximo al suyo. Se dice que la aproximación se hace por defecto cuando la sustitución es por un número menor que el original, y por exceso cuando la sustitución se hace por un número mayor que él. Las aproximaciones se hacen a un orden dado. En cada aproximación coinciden todas sus cifras con las del número original hasta llegar a la cifra correspondiente al orden establecido. Esta última cifra también coincide si la aproximación es por defecto, y es una unidad mayor que la del número original si la aproximación es por exceso Ejemplo: Escribe una aproximación por defecto y otra por exceso de 3 hasta las milésimas: 3 = 1' Por defecto: Por exceso: ERRORES Al utilizar cualquier aproximación de un número real se comete un error, que será menor cuantas más cifras decimales tenga la aproximación. Error absoluto = valor real aproximación Pero no es lo mismo cometer un error de 1 cm al medir la longitud de la clase que al medir la distancia del instituto al paseo; por eso tiene sentido definir: Error absoluto Error relativo = valor real Estos errores no se pueden calcular de forma exacta cuando el valor aproximado es de un número irracional (valor exacto desconocido). Ejemplo: Calcula el error absoluto y relativo que se comete al tomar 1 17 como valor aproximado del número Solución: Error absoluto = valor real aproximación = 1' 17 = = = '17 = = = = ) 0'003 1 Error absoluto Error relativo = = = = = valor real REDONDEO 100 0' ó 0' % Redondear un número a un cierto orden es escoger de entre las aproximaciones del número por defecto y por exceso (hasta ese orden) aquella con la que se cometa menor error absoluto.

8 Para redondear un número a un cierto orden, se desprecian todas las cifras siguientes al orden indicado. -Si la primera cifra despreciada es inferior a 5 (0,1,2,3,ó 4), se toma como redondeo la aproximación por defecto. - Si la primera cifra despreciada es superior o igual a 5 (5,6,7,8,ó 9), se toma como redondeo la aproximación por exceso. Ejemplo: El redondeo de 7 = 2' a las centésimas es: NOTACIÓN CIENTÍFICA Sirve para expresar números muy grandes y muy pequeños. Ejemplo: Los números siguientes están puestos en notación científica: 2, = (14 cifras a partir de la coma) 7, = 0, (14 cifras cero, incluido el de la parte entera) Un número puesto en notación científica consta de dos factores: Un número decimal exacto cuya parte entera está formada por una única cifra distinta de 0. Una potencia de 10 Si n es positivo, el número N es grande N = a, bcd... x n 10 Si n es negativo, el número N es pequeño. OPERACIONES CON NÚMEROS EN NOTACIÓN CIENTÍFICA Para sumar y restar: hay que preparar los sumandos de modo que todos tengan la misma potencia de base 10 y así poder sacarla factor común. Ejemplo: El producto, el cociente y la potencia son inmediatos: Ejemplo:

Cuando se enumeran todos los elementos que componen el conjunto. A = { 1, 2, 3, 4, 5 }

Cuando se enumeran todos los elementos que componen el conjunto. A = { 1, 2, 3, 4, 5 } LOS NÚMEROS REALES TEMA 1 IDEAS SOBRE CONJUNTOS Partiremos de la idea natural de conjunto y del conocimiento de si un elemento pertenece (* ) o no pertenece (* ) a un conjunto. Los conjuntos se pueden

Más detalles

16/11/2015. Tema 1º Números reales 1.0) Conceptos previos. 1.1) Fracciones. Números racionales. 1.2) Operaciones con números racionales.

16/11/2015. Tema 1º Números reales 1.0) Conceptos previos. 1.1) Fracciones. Números racionales. 1.2) Operaciones con números racionales. Irracionales (I) 16/11/01 1.) Operaciones con números racionales. 1.) Expresiones fraccionarias y decimal de un número racional. Irracional 1.) Representación de números racionales 1.10) Intervalos y semirrectas.

Más detalles

Números Naturales. Los números enteros

Números Naturales. Los números enteros Números Naturales Con los números naturales contamos los elementos de un conjunto (número cardinal). O bien expresamos la posición u orden que ocupa un elemento en un conjunto (ordinal). El conjunto de

Más detalles

TEMA 1 CONJUNTOS NUMÉRICOS

TEMA 1 CONJUNTOS NUMÉRICOS TEMA 1 CONJUNTOS NUMÉRICOS. Objetivos / Criterios de evaluación O.1.1 Realizar correctamente operaciones con fracciones: Suma, resta, producto, cociente, potencia y radicación. O.1.2 Resolver operaciones

Más detalles

Números. Índice del libro. 1. Los números reales. 2. Operaciones con números enteros y racionales. 3. Números decimales

Números. Índice del libro. 1. Los números reales. 2. Operaciones con números enteros y racionales. 3. Números decimales 1. Los números reales 2. Operaciones con números enteros y racionales 3. decimales 4. Potencias de exponente entero 5. Radicales 6. Notación científica y unidades de medida 7. Errores Índice del libro

Más detalles

Conjunto de Números Racionales.

Conjunto de Números Racionales. Conjunto de Números Racionales. El conjunto de los números racionales está formado por: el conjunto de los números enteros (-2, -1, 0, 1, 2, ) y los números fraccionarios y se representan con una Q. Números

Más detalles

TEMA 1: NÚMEROS REALES 1.1 Numeros racionales Ejemplo:

TEMA 1: NÚMEROS REALES 1.1 Numeros racionales Ejemplo: TEMA : NÚMEROS REALES. Numeros racionales Ejemplo: 4... Entonces puedo expresar el "" de infinitas formas, siendo su fracción generatriz la que es irreducible. En nuestro caso Otro ejemplo de número racional

Más detalles

Enteros (Z):..., -3, -2, -1, 0, 1, 2, 3,... Números enteros (positivos o negativos), sin decimales. Incluye a los naturales.

Enteros (Z):..., -3, -2, -1, 0, 1, 2, 3,... Números enteros (positivos o negativos), sin decimales. Incluye a los naturales. Tema 1: Números Reales 1.1 Conjunto de los números Naturales (N): 0, 1, 2, 3. Números positivos sin decimales. Sirven para contar. Enteros (Z):..., -3, -2, -1, 0, 1, 2, 3,... Números enteros (positivos

Más detalles

1. NUMEROS REALES a. Los Números Reales

1. NUMEROS REALES a. Los Números Reales 1. NUMEROS REALES a. Los Números Reales Los números reales comprenden todo el campo de números que utilizamos en las matemáticas, a excepción de los números complejos que veremos en capítulos superiores.

Más detalles

4 ; 3. d) 2 y 5 3. a) 2,2 b) c) 2,24 d) 2,236 e) 2,23607

4 ; 3. d) 2 y 5 3. a) 2,2 b) c) 2,24 d) 2,236 e) 2,23607 EL NÚMERO REAL.- LOS NÚMEROS IRRACIONALES. NÚMEROS REALES - Indicar a qué conjuntos ( Ν, Ζ, Q, R ) pertenecen los siguientes números: -2 ; ; -4/ 5; 6/ 4; 4 ; 25 ; Ν ; 6/ 4 Ζ -2 ; 25 Q -4/ 5 ; 6 ; 4 ; 8

Más detalles

En una recta numérica el punto que representa el cero recibe el nombre de origen.

En una recta numérica el punto que representa el cero recibe el nombre de origen. 1. Conjuntos numéricos Los conjuntos numéricos con los que has trabajado tanto en Enseñanza Básica como en Enseñanza Media, se van ampliando a medida que se necesita resolver ciertas problemáticas de la

Más detalles

LOS CONJUNTOS NUMÉRICOS

LOS CONJUNTOS NUMÉRICOS 1 Los números I Para empezar Cuenta la historia que la falange macedonia, el famoso e invencible ejército de Alejandro Magno, infundía temor a sus enemigos con su sola presencia. Los soldados avanzaban

Más detalles

Fracciones numéricas enteras

Fracciones numéricas enteras Números racionales Fracciones numéricas enteras En matemáticas, una fracción numérica entera expresa la división de un número entero en partes iguales. Una fracción numérica consta de dos términos: El

Más detalles

Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 =

Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 1. NÚMEROS NATURALES POTENCIAS DE UN NÚMERO NATURAL Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3 El factor que se repite es la base, y el número de veces que se repite

Más detalles

Los Conjuntos de Números

Los Conjuntos de Números Héctor W. Pagán Profesor de Matemática Mate 40 Debemos recordar.. Los conjuntos de números 2. Opuesto. Valor absoluto 4. Operaciones de números con signo Los Conjuntos de Números Conjuntos importantes

Más detalles

SISTEMA DE NUMEROS REALES

SISTEMA DE NUMEROS REALES SISTEMA DE NUMEROS REALES 1.1 Conjuntos Es una agrupación de objetos distintos (pero con algunas características en común), los que reciben el nombre de elementos. Generalmente se nombra a un conjunto

Más detalles

Preparación para Álgebra 1 de Escuela Superior

Preparación para Álgebra 1 de Escuela Superior Preparación para Álgebra 1 de Escuela Superior Este curso cubre los conceptos mostrados a continuación. El estudiante navega por trayectos de aprendizaje basados en su nivel de preparación. Usuarios institucionales

Más detalles

UNIDAD 1: NÚMEROS RACIONALES OBJETIVOS

UNIDAD 1: NÚMEROS RACIONALES OBJETIVOS UNIDAD 1: NÚMEROS RACIONALES Distinguir las distintas interpretaciones de una fracción. Reconocer fracciones equivalentes. Amplificar fracciones. Simplificar fracciones hasta obtener la fracción irreducible.

Más detalles

CONJUNTOS NUMÉRICOS. La noción de número es tan antigua como el hombre mismo ya que son necesarios para resolver situaciones de la vida diaria.

CONJUNTOS NUMÉRICOS. La noción de número es tan antigua como el hombre mismo ya que son necesarios para resolver situaciones de la vida diaria. CONJUNTOS NUMÉRICOS La noción de número es tan antigua como el hombre mismo ya que son necesarios para resolver situaciones de la vida diaria. Por ejemplo, usamos números para contar una determinada cantidad

Más detalles

IES Juan García Valdemora NÚMEROS REALES Departamento de Matemáticas NÚMEROS REALES

IES Juan García Valdemora NÚMEROS REALES Departamento de Matemáticas NÚMEROS REALES NÚMEROS REALES. NÚMEROS RACIONALES Desde la aparición de las sociedades humanas los números desempeñan un papel fundamental para ordenar y contar los elementos de un conjunto. Así surgen, en primer lugar,

Más detalles

GUÍAS DE ESTUDIO. Programa de alfabetización, educación básica y media para jóvenes y adultos

GUÍAS DE ESTUDIO. Programa de alfabetización, educación básica y media para jóvenes y adultos GUÍAS DE ESTUDIO Código PGA-02-R02 1 INSTITUCIÓN EDUCATIVA CASD Programa de alfabetización, educación básica y media para jóvenes y adultos UNIDAD DE TRABAJO Nº 1 PERIODO 1 1. ÁREA INTEGRADA: MATEMÁTICAS

Más detalles

Conjuntos Los conjuntos se emplean en muchas áreas de las matemáticas, de modo que es importante una comprensión de los conjuntos y de su notación.

Conjuntos Los conjuntos se emplean en muchas áreas de las matemáticas, de modo que es importante una comprensión de los conjuntos y de su notación. NÚMEROS REALES Conjuntos Los conjuntos se emplean en muchas áreas de las matemáticas, de modo que es importante una comprensión de los conjuntos y de su notación. Un conjunto es una colección bien definida

Más detalles

FRACCIONES. Las partes que tomamos ( 3 ó 5 ) se llaman numerador y las partes en que dividimos el queso ( 8 ) denominador.

FRACCIONES. Las partes que tomamos ( 3 ó 5 ) se llaman numerador y las partes en que dividimos el queso ( 8 ) denominador. FRACCIONES Una fracción, en general, es la expresión de una cantidad dividida por otra, y una fracción propia representa las partes que tomamos de un todo. El ejemplo clásico es el de un queso que partimos

Más detalles

Números fraccionarios y decimales

Números fraccionarios y decimales Unidad didáctica Números fraccionarios y decimales 1.- Las fracciones. a Una fracción es un número racional, escrito en la forma, tal que b 0 y representa una parte b de un total. El denominador (el número

Más detalles

www.matesxronda.net José A. Jiménez Nieto

www.matesxronda.net José A. Jiménez Nieto NÚMEROS REALES 1. NÚMEROS IRRACIONALES: CARACTERIZACIÓN. En el tema correspondiente a números racionales hemos visto que estos números tienen una característica esencial: su expresión decimal es exacta

Más detalles

Computación I Representación Interna Curso 2011

Computación I Representación Interna Curso 2011 Computación I Representación Interna Curso 2011 Facultad de Ingeniería Universidad de la República Estándar IEEE 754 Primero se definen tres formatos s e F Total (bits) (bits) (bits) (bytes) simple precisión

Más detalles

CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 5º ED. PRIMARIA

CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 5º ED. PRIMARIA CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 5º ED. PRIMARIA El cálculo y los problemas se irán trabajando y evaluando a lo largo de todo el año. 1ª EVALUACIÓN CONTENIDOS. o Los números de siete y

Más detalles

NÚMEROS RACIONALES Y REPRESENTACIÓN DECIMAL. Mate 3041 Profa. Milena R. Salcedo Villanueva

NÚMEROS RACIONALES Y REPRESENTACIÓN DECIMAL. Mate 3041 Profa. Milena R. Salcedo Villanueva NÚMEROS RACIONALES Y REPRESENTACIÓN DECIMAL Mate 3041 Profa. Milena R. Salcedo Villanueva 1 FRACCIONES Una fracción tiene dos términos: numerador y denominador Denominador indica las veces que se divide

Más detalles

PASAPALABRA BLOQUE NÚMEROS

PASAPALABRA BLOQUE NÚMEROS EMPIEZA POR A 1) Rama de las Matemáticas que se encarga del estudio de los números y sus propiedades: ARITMÉTICA 2) Valor de una cifra, independientemente del lugar que ocupe o del signo que la precede:

Más detalles

Tema 05: Números Decimales, Fracciones y Porcentajes Primero de Educación Secundaria Obligatoria. I.e.s Fuentesaúco.

Tema 05: Números Decimales, Fracciones y Porcentajes Primero de Educación Secundaria Obligatoria. I.e.s Fuentesaúco. 2009 Tema 05: Números Decimales, Fracciones y Porcentajes Primero de Educación Secundaria Obligatoria. I.e.s Fuentesaúco. Manuel González de León. mgdl 0/0/2009 INDICE: 0. UNIDADES DECIMALES: 02. DESCOMPOSICIÓN

Más detalles

OPERACIONES CON NÚMEROS REALES

OPERACIONES CON NÚMEROS REALES NÚMEROS REALES Por número real llamaremos a un número que puede ser racional o irracional, por consiguiente, el conjunto de los números reales es la unión del conjunto de números racionales y el conjunto

Más detalles

El estudiante de Pitágoras

El estudiante de Pitágoras COLEGIO INTEGRADO SIMÓN BOLÍVAR GUÍA PARA EL ESTUDIANTE MBP354 FORMATO 1 ASIGNATURA: ARITMÉTICA DOCENTE: CLAUDIA RODRIGUEZ PERIODO: SEGUNDO VALORACIÓN TEMA:NUMEROS RACIONALES. I ESTUDIANTE: FECHA: GRADO:SEPTIMO

Más detalles

TEMA 1: NÚMEROS REALES

TEMA 1: NÚMEROS REALES TEMA 1: NÚMEROS REALES 3º ESO Matemáticas Apuntes para trabajo del alumnos en el aula. 1. Fracciones. Números racionales Si se multiplican o dividen el numerador y el denominador de una fracción por un

Más detalles

POTENCIAS. MÚLTIPLOS Y DIVISORES. MÁXIMO COMÚN DIVISOR Y MÍNIMO COMÚN MÚLTIPLO.

POTENCIAS. MÚLTIPLOS Y DIVISORES. MÁXIMO COMÚN DIVISOR Y MÍNIMO COMÚN MÚLTIPLO. 1. LOS NÚMEROS NATURALES POTENCIAS. MÚLTIPLOS Y DIVISORES. MÁXIMO COMÚN DIVISOR Y MÍNIMO COMÚN MÚLTIPLO. 2. LOS NÚMEROS ENTEROS. VALOR ABSOLUTO DE UN NÚMERO ENTERO. REPRESENTACIÓN GRÁFICA. OPERACIONES.

Más detalles

CLASIFICACION DE LOS NUMEROS

CLASIFICACION DE LOS NUMEROS CLASIFICACION DE LOS NUMEROS NÚMEROS NATURALES En el desarrollo de las culturas fue evolucionando esta forma primitiva de representar objetos o cosas reales a través de símbolos naciendo así el primer

Más detalles

RESUMEN DE CONCEPTOS

RESUMEN DE CONCEPTOS RESUMEN DE CONCEPTOS 1º ESO MATEMÁTICAS NÚMEROS NATURALES (1) Múltiplo de un número: Un número es múltiplo de otro si el segundo está contenido en el primero un número exacto de veces. Ejemplo: 16 es múltiplo

Más detalles

LOS NÚMEROS ENTEROS. Para restar un número entero, se quita el paréntesis y se pone al número el signo contrario al que tenía.

LOS NÚMEROS ENTEROS. Para restar un número entero, se quita el paréntesis y se pone al número el signo contrario al que tenía. Melilla Los números Enteros y operaciones elementales LOS NÚMEROS ENTEROS 1º LOS NÚMEROS ENTEROS. El conjunto de los números enteros Z está formado por los números naturales (enteros positivos) el cero

Más detalles

Concepto de fracción. Unidad fraccionaria. Concepto de fracción. Representación de fracciones

Concepto de fracción. Unidad fraccionaria. Concepto de fracción. Representación de fracciones Unidad fraccionaria Concepto de fracción La unidad fraccionaria es cada una de las partes que se obtienen al dividir la unidad en n partes iguales. Concepto de fracción Una fracción es el cociente de dos

Más detalles

Unidad 2: Ecuaciones, inecuaciones y sistemas.

Unidad 2: Ecuaciones, inecuaciones y sistemas. Unidad 2: Ecuaciones, inecuaciones y sistemas 1 Unidad 2: Ecuaciones, inecuaciones y sistemas. 1.- Factorización de polinomios. M. C. D y m.c.m de polinomios. Un número a es raíz de un polinomio es 0.

Más detalles

CONJUNTO DE LOS NÚMEROS NATURALES

CONJUNTO DE LOS NÚMEROS NATURALES República Bolivariana de Venezuela Ministerio de la Defensa Universidad Nacional Experimental de las Fuerzas Armadas Curso de Inducción Universitaria CIU Cátedra: Razonamiento Matemático CONJUNTO DE LOS

Más detalles

Guía del estudiante. Clase 16 Tema: Números racionales - orden en los racionales y representación decimal. Lectura. Colombia Biodiversa Amenazada

Guía del estudiante. Clase 16 Tema: Números racionales - orden en los racionales y representación decimal. Lectura. Colombia Biodiversa Amenazada MATEMÁTICAS Grado Séptimo Bimestre III Semana Número de clases 16-19 Clase 16 Tema: Números racionales - orden en los racionales representación decimal Lectura Colombia Biodiversa Amenazada Colombia ocupa

Más detalles

EJERCICIOS REFUERZO MATEMÁTICAS 3 ESO 1º TRIMESTRE

EJERCICIOS REFUERZO MATEMÁTICAS 3 ESO 1º TRIMESTRE EJERCICIOS REFUERZO MATEMÁTICAS ESO º TRIMESTRE NÚMEROS RACIONALES º. Amplifica las siguientes fracciones para que todas tengan denominador º. Cuál de las siguientes fracciones es una fracción amplificada

Más detalles

DEPARTAMENTO DE MATEMÁTICAS MATEMÁTICAS 1º DE ESO PRIMER TRIMESTRE

DEPARTAMENTO DE MATEMÁTICAS MATEMÁTICAS 1º DE ESO PRIMER TRIMESTRE DEPARTAMENTO DE MATEMÁTICAS MATEMÁTICAS 1º DE ESO PRIMER TRIMESTRE OBJETIVOS, CONTENIDOS Y CRITERIOS DE EVALUACIÓN DESARROLLADOS EN EL TRIMESTRE OBJETIVOS Realizar las operaciones con números naturales

Más detalles

Preparación para Álgebra universitaria con trigonometría

Preparación para Álgebra universitaria con trigonometría Preparación para Álgebra universitaria con trigonometría Este curso cubre los siguientes temas. Usted puede personalizar la gama y la secuencia de este curso para satisfacer sus necesidades curriculares.

Más detalles

Operaciones con fracciones I

Operaciones con fracciones I Matemáticas.º ESO Unidad Ficha 1 Operaciones con fracciones I La suma y resta de fracciones con igual denominador es otra fracción que tiene por: - Numerador: la suma o resta de los numeradores. - Denominador:

Más detalles

Opuesto de un número +3 + (-3) = (+5) = 0. N = 0,1, 2,3,4, Conjunto de los números naturales

Opuesto de un número +3 + (-3) = (+5) = 0. N = 0,1, 2,3,4, Conjunto de los números naturales Números enteros Opuesto de un número Los números enteros son una extensión de los números naturales, de tal forma, que los números enteros tienen signo positivo (+) ó negativo (-). Los números positivos

Más detalles

Unidad 1 Números. Los números naturales son aquellos que se utilizan para contar los elementos de un conjunto.

Unidad 1 Números. Los números naturales son aquellos que se utilizan para contar los elementos de un conjunto. Unidad 1 Números 1.- Números Naturales Los números naturales son aquellos que se utilizan para contar los elementos de un conjunto. El conjunto de números naturales se representa por la letra N Operaciones

Más detalles

a) Da una aproximación (con un número entero de metros) para las medidas del largo y del ancho del campo.

a) Da una aproximación (con un número entero de metros) para las medidas del largo y del ancho del campo. Modelos de EXAMEN Ejercicio nº 1.- Nos dicen que la medida de un campo de forma rectangular es de 45,236 m de largo por 38,54 m de ancho. Sin embargo, no estamos seguros de que las cifras decimales dadas

Más detalles

Infinito más un número Infinito más infinito. Infinito por infinito. OPERACIONES CON INFINITO Sumas con infinito. Productos con infinito

Infinito más un número Infinito más infinito. Infinito por infinito. OPERACIONES CON INFINITO Sumas con infinito. Productos con infinito OPERACIONES CON INFINITO Sumas con infinito Infinito más un número Infinito más infinito Infinito menos infinito Productos con infinito Infinito por un número Infinito por infinito Infinito por cero Cocientes

Más detalles

Unidad Didáctica I: El conjunto de los números reales

Unidad Didáctica I: El conjunto de los números reales Unidad Didáctica I: El conjunto de los números reales Concepto de número racional Cuando en una determinada situación se hace necesaria la partición de objetos (unidades), los números enteros se manifiestan

Más detalles

Soluciones a las actividades

Soluciones a las actividades Soluciones a las actividades BLOQUE I Aritmética. Los números reales. Potencias, radicales y logaritmos Los números reales. Números racionales e irracionales Calcula mentalmente el área de un cuadrado

Más detalles

Contenido 1. Definición Tipos de fracciones Fracción igual a la unidad 9 4. Fracción propia Fracción impropia Frac

Contenido 1. Definición Tipos de fracciones Fracción igual a la unidad 9 4. Fracción propia Fracción impropia Frac FRACCIÓN Contenido 1. Definición... 3 2. Tipos de fracciones..... 8 3. Fracción igual a la unidad 9 4. Fracción propia... 10 5. Fracción impropia... 11 6. Fracciones decimales... 14 7. Fracciones equivalentes...

Más detalles

Tema 1 Conjuntos numéricos

Tema 1 Conjuntos numéricos Tema 1 Conjuntos numéricos En este tema: 1.1 Números naturales. Divisibilidad 1.2 Números enteros 1.3 Números racionales 1.4 Números reales 1.5 Potencias y radicales 1.7 Logaritmos decimales 1.1 NÚMEROS

Más detalles

Los números enteros. Dado que los enteros contienen los enteros positivos, se considera a los números naturales son un subconjunto de los enteros.

Los números enteros. Dado que los enteros contienen los enteros positivos, se considera a los números naturales son un subconjunto de los enteros. Los números enteros Con los números naturales no era posible realizar diferencias donde el minuendo era menor que el que el sustraendo, pero en la vida nos encontramos con operaciones de este tipo donde

Más detalles

TEMA 1. Las cuentas de andar por casa

TEMA 1. Las cuentas de andar por casa TEMA 1. Las cuentas de andar por casa 1.-Los distintos tipos de números Módulo 3 1.1. Los números naturales El conjunto de los números naturales está formado por: N = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9,...}

Más detalles

Unidad 3: Razones trigonométricas.

Unidad 3: Razones trigonométricas. Unidad 3: Razones trigonométricas 1 Unidad 3: Razones trigonométricas. 1.- Medida de ángulos: grados y radianes. Las unidades de medida de ángulos más usuales son el grado sexagesimal y el radián. Se define

Más detalles

CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 6º ED.

CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 6º ED. . G r e d o s S a n D i e g o V a l l e c a s CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 6º ED. PRIMERA EVALUACIÓN El Sistema de numeración decimal El sistema de numeración decimal. Lectura y escritura

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 4. Números reales y números complejos

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 4. Números reales y números complejos NÚMEROS REALES NÚMEROS NATURALES Y NÚMEROS ENTEROS Los números naturales surgen como respuesta a la necesidad de nuestros antepasados de contar los elementos de un conjunto (por ejemplo los animales de

Más detalles

SCUACAC026MT22-A16V1. SOLUCIONARIO Ejercitación Generalidades de números

SCUACAC026MT22-A16V1. SOLUCIONARIO Ejercitación Generalidades de números SCUACAC026MT22-A16V1 0 SOLUCIONARIO Ejercitación Generalidades de números 1 TABLA DE CORRECCIÓN GUÍA PRÁCTICA EJERCITACIÓN GENERALIDADES DE NÚMEROS Ítem Alternativa 1 E 2 D 3 B 4 E 5 A 6 E 7 B 8 D 9 D

Más detalles

Bases Matemáticas para la Educación Primaria. Guía de Estudio. Tema 3: Números racionales. Parte I: Fracciones y razones Números racionales

Bases Matemáticas para la Educación Primaria. Guía de Estudio. Tema 3: Números racionales. Parte I: Fracciones y razones Números racionales Bases Matemáticas para la Educación Primaria Guía de Estudio Tema 3: Números racionales Parte I: Fracciones y razones Números racionales 1 Situación introductoria ANÁLISIS DE CONOCIMIENTOS PUESTOS EN JUEGO

Más detalles

MATERIA: MATEMÁTICAS CURSO: CONTENIDOS MÍNIMOS EXTRACTO DE LA PROGRAMACIÓN DIDÁCTICA IES VEGA DEL TÁDER 2º ESO

MATERIA: MATEMÁTICAS CURSO: CONTENIDOS MÍNIMOS EXTRACTO DE LA PROGRAMACIÓN DIDÁCTICA IES VEGA DEL TÁDER 2º ESO MATERIA: MATEMÁTICAS CURSO: 2º ESO CONTENIDOS MÍNIMOS NÚMEROS. Relación de divisibilidad. Descomposición de un número natural en factores primos y cálculo del máximo común divisor y del mínimo común múltiplo

Más detalles

Aritmética de Enteros

Aritmética de Enteros Aritmética de Enteros La aritmética de los computadores difiere de la aritmética usada por nosotros. La diferencia más importante es que los computadores realizan operaciones con números cuya precisión

Más detalles

RESUMEN DE CONCEPTOS TEÓRICOS MATEMÁTICAS 1º ESO. CURSO

RESUMEN DE CONCEPTOS TEÓRICOS MATEMÁTICAS 1º ESO. CURSO RESUMEN DE CONCEPTOS TEÓRICOS MATEMÁTICAS 1º ESO. CURSO 2015-2016 UNIDAD 1: NÚMEROS NATURALES (1) Múltiplo de un número: Un número es múltiplo de otro si el segundo está contenido en el primero un número

Más detalles

Unidad 1: Números reales.

Unidad 1: Números reales. Unidad 1: Números reales. 1 Unidad 1: Números reales. 1.- Números racionales e irracionales Números racionales: Son aquellos que se pueden escribir como una fracción. 1. Números enteros 2. Números decimales

Más detalles

NÚMEROS RACIONALES. Evaluación A. Ten en cuenta. Recuerda. Recuerda

NÚMEROS RACIONALES. Evaluación A. Ten en cuenta. Recuerda. Recuerda NÚMEROS RACIONALES Evaluación A 1. Ordena de menor a mayor estas fracciones: 1 2, 9 20, 18 25, 3 5 Para ordenar fracciones, expresamos la solución mediante las fracciones iniciales, no las equivalentes

Más detalles

Los números enteros Z = {,-3, -2, -1, 0, 1, 2, 3, }

Los números enteros Z = {,-3, -2, -1, 0, 1, 2, 3, } Los números enteros La unión de los números naturales y los enteros negativos forma el conjunto de los números enteros, que se designa con la palabra Z. Está constituido por infinitos elementos y se representan

Más detalles

Números Racionales. Repaso para la prueba. Profesora: Jennipher Ferreira Curso: 7 B

Números Racionales. Repaso para la prueba. Profesora: Jennipher Ferreira Curso: 7 B Números Racionales Repaso para la prueba Profesora: Jennipher Ferreira Curso: 7 B Tipos de Fracciones Fracciones propias: Son aquellas en las que el denominador es mayor al numerador, y su valor es menor

Más detalles

TEMA 2: TEORÍA DE CONJUNTOS Y CONJUNTOS NUMÉRICOS.

TEMA 2: TEORÍA DE CONJUNTOS Y CONJUNTOS NUMÉRICOS. TEMA 2: TEORÍA DE CONJUNTOS Y CONJUNTOS NUMÉRICOS. TEORÍA DE CONJUNTOS. Definiciones. Se define un conjunto como una colección de objetos o cosas, se nombran con letras mayúsculas (A, B...). Cada uno de

Más detalles

CAPÍTULO 3: PORCIONES Y NÚMEROS ENTEROS

CAPÍTULO 3: PORCIONES Y NÚMEROS ENTEROS CAPÍTULO 3: PORCIONES Y NÚMEROS ENTEROS Fecha: Caja de herramientas 2014 CPM Educational Program. All rights reserved. 22 Capítulo 3: Porciones y números enteros Fecha: 23 2014 CPM Educational Program.

Más detalles

El concepto de número

El concepto de número Los Números Reales El concepto de número El concepto de número es una de las más importantes abstracciones de la mente humana. Los números han surgido a lo largo de la historia como herramienta para resolver

Más detalles

CONJUNTOS NUMÉRICOS Los conjuntos numéricos Conjuntos numéricos

CONJUNTOS NUMÉRICOS Los conjuntos numéricos Conjuntos numéricos CONJUNTOS NUMÉRICOS Estudiemos los conjuntos numéricos sin su estructura y la forma como poco a poco se van formando nuevos conjuntos por la necesidad de resolver algunos problemas. 0.1. Los conjuntos

Más detalles

Capítulo 5. Los números reales y sus representaciones Pearson Education, Inc. Diapositiva 5-5-1

Capítulo 5. Los números reales y sus representaciones Pearson Education, Inc. Diapositiva 5-5-1 Capítulo 5 Los números reales y sus representaciones 2012 Pearson Education, Inc. Diapositiva 5-5-1 Capítulo 5: Los números reales y sus representaciones 5.1 Números reales, orden y valor absoluto 5.2

Más detalles

3.2. Conceptos generales. (A) Una fracción es el cociente, razón o división de dos números enteros. El dividendo se llama

3.2. Conceptos generales. (A) Una fracción es el cociente, razón o división de dos números enteros. El dividendo se llama 3. NÚMEROS RACIONALES. 3.1. Introducción. Expresiones comunes tales como "un tercio de cerveza", "medio litro de agua", "tres cuartos de kilo de carne", "son las doce cuarto",... no pueden ser representadas,

Más detalles

EJERCICIOS DE NÚMEROS REALES

EJERCICIOS DE NÚMEROS REALES EJERCICIOS DE NÚMEROS REALES 1. Clasifica los siguientes números en racionales o irracionales: 3/5, 0 75, 7, -4, 632, 0 141441114 2. Escribe tres números irracionales que estén dados por raíces y tres

Más detalles

Tema 1: Números Reales.

Tema 1: Números Reales. Tema 1: Números Reales. En este tema, estudiaremos lo que son los números reales, el conjunto de los números reales y los distintos subconjuntos (Naturales, Enteros, Racionales e Irracionales), así como

Más detalles

Introducción. El uso de los símbolos en matemáticas.

Introducción. El uso de los símbolos en matemáticas. Introducción El uso de los símbolos en matemáticas. En el estudio de las matemáticas lo primero que necesitamos es conocer su lenguaje y, en particular, sus símbolos. Algunos símbolos, que reciben el nombre

Más detalles

Números Reales. 87 ejercicios para practicar con soluciones. 1 Ordena de menor a mayor las siguientes fracciones: y

Números Reales. 87 ejercicios para practicar con soluciones. 1 Ordena de menor a mayor las siguientes fracciones: y Números Reales. 8 ejercicios para practicar con soluciones Ordena de menor a mayor las siguientes fracciones: y 8 Reducimos a común denominador: 0 80 0 00 0 y 0 0 0 0 0 0 8 0 El orden de las fracciones,

Más detalles

UNIDAD DIDÁCTICA #1 CONTENIDO

UNIDAD DIDÁCTICA #1 CONTENIDO UNIDAD DIDÁCTICA #1 CONTENIDO OPERACIONES CON DECIMALES MULTIPLICACION DE DECIMALES DIVISIÓN DE DECIMALES OPERACIONES COMBINADAS CON DECIMALES POTENCIACIÓN DE DECIMALES HOJA DE EVALUACIÓN BIBLIOGRAFÍA

Más detalles

El ente básico de la parte de la matemática conocida como ANÁLISIS, lo constituye el llamado sistema de los número reales.

El ente básico de la parte de la matemática conocida como ANÁLISIS, lo constituye el llamado sistema de los número reales. EL SISTEMA DE LOS NÚMEROS REALES Introducción El ente básico de la parte de la matemática conocida como ANÁLISIS, lo constituye el llamado sistema de los número reales. Números tales como:1,3, 3 5, e,

Más detalles

CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 6º ED. PRIMARIA

CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 6º ED. PRIMARIA CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 6º ED. PRIMARIA El cálculo y los problemas se irán trabajando y evaluando a lo largo de todo el año. 1ª EVALUACIÓN CONTENIDOS El Sistema de numeración decimal

Más detalles

Operaciones de números racionales

Operaciones de números racionales Operaciones de números racionales Yuitza T. Humarán Martínez Adapatado por Caroline Rodriguez Departamento de Matemáticas Universidad de Puerto Rico en Arecibo El conjunto de los números racionales consiste

Más detalles

NÚMEROS ENTEROS. Representa en la recta los números enteros 2, 0 +2, +5 y 7 y ordénalos de mayor a menor. +5 > +2 > 0 > 2 > 7

NÚMEROS ENTEROS. Representa en la recta los números enteros 2, 0 +2, +5 y 7 y ordénalos de mayor a menor. +5 > +2 > 0 > 2 > 7 1 Números reales NÚMEROS ENTEROS El número opuesto de un número es el mismo número cambiado de signo. Opuesto Opuesto + El valor absoluto de un número es el mismo número sin signo. I I I+I Un número entero

Más detalles

Los números racionales: Q

Los números racionales: Q Los números racionales: Q Qué fracción del área total está coloreada en cada una de las figuras de al lado? (a) (b) Juan leyó 2/5 de las páginas de un libro el lunes, el martes estaba ocupado y sólo pudo

Más detalles

UNIDAD 8 INECUACIONES. Objetivo general.

UNIDAD 8 INECUACIONES. Objetivo general. 8. 1 UNIDAD 8 INECUACIONES Objetivo general. Al terminar esta Unidad resolverás inecuaciones lineales y cuadráticas e inecuaciones que incluyan valores absolutos, identificarás sus conjuntos solución en

Más detalles

Potencias. Potencias con exponente entero. Con exponente racional o fraccionario

Potencias. Potencias con exponente entero. Con exponente racional o fraccionario Potencias con exponente entero Potencias Con exponente racional o fraccionario Propiedades 1.a 0 = 1 2.a 1 = a 3.Producto de potencias con la misma base: Es otra potencia con la misma base y cuyo exponente

Más detalles

Primaria Sexto Grado Matemáticas (con QuickTables)

Primaria Sexto Grado Matemáticas (con QuickTables) Primaria Sexto Grado Matemáticas (con QuickTables) Este curso cubre los conceptos mostrados a continuación. El estudiante navega por trayectos de aprendizaje basados en su nivel de preparación. Usuarios

Más detalles

Æ = {1,2,3,4,5,6,...}

Æ = {1,2,3,4,5,6,...} 1 LOS NÚMEROS NATURALES Æ. 1 Los números reales. 1. Los números naturales Æ. Los números naturales son aquellos que sirven para contar y son: Æ = {1,,3,4,5,6,...} El conjunto de los números naturales se

Más detalles

Matemáticas Orientadas a las Enseñanzas Aplicadas IES

Matemáticas Orientadas a las Enseñanzas Aplicadas IES Matemáticas Orientadas a las Enseñanzas Aplicadas IES Los números enteros y racionales. Contenidos 1. Números enteros. Representación y orden. Operaciones. Problemas. 2. Fracciones y decimales. Fracciones

Más detalles

3 Números decimales OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Significado de los números decimales. Representación en la recta numérica.

3 Números decimales OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Significado de los números decimales. Representación en la recta numérica. 829485 _ 024-008.qxd 12/9/07 15:10 Página 27 Números decimales INTRODUCCIÓN RESUMEN DE LA UNIDAD En esta unidad estudiamos el sistema de numeración decimal, e introducimos las denominaciones de la parte

Más detalles

Conectados con el pasado, proyectados hacia el futuro Plan Anual de Matemática II Año PAI VII Grado

Conectados con el pasado, proyectados hacia el futuro Plan Anual de Matemática II Año PAI VII Grado Actualizado en febrero del 2013 Conectados con el pasado, proyectados hacia el futuro Plan Anual de Matemática II Año PAI VII Grado CONTENIDOS OBJETIVOS ESPECÍFICOS HABILIDADES CRITERIOS DE EVALUACIÓN

Más detalles

Límite de una función

Límite de una función Límite de una función El límite de la función f(x) en el punto x 0, es el valor al que se acercan las imágenes (las y) cuando los originales (las x) se acercan al valor x 0. Es decir el valor al que tienden

Más detalles

MATEMÁTICAS 1º DE ESO

MATEMÁTICAS 1º DE ESO MATEMÁTICAS 1º DE ESO LOMCE TEMA IV : LAS FRACCIONES. OPERACIONES Los siginificados de una fracción. Fracciones propias e impropias. Equivalencias de fracciones. Amplificación y simplificación. Fracción

Más detalles

13 ESO. «Es imposible aprender matemáticas sin resolver ejercicios» Godement. Matemático

13 ESO. «Es imposible aprender matemáticas sin resolver ejercicios» Godement. Matemático «Es imposible aprender matemáticas sin resolver ejercicios» 1 ESO Godement. Matemático ÍNDICE: 1. NÚMEROS RACIONALES 2. OPERACIONES CON FRACCIONES. NÚMEROS DECIMALES 4. FRACCIÓN GENERATRIZ DE UN NÚMERO

Más detalles

MATEMATICA GRADO 9 II PERIODO PROF. LIC. ESP. BLANCA NIEVES CASTILLO R. CORREO: cel

MATEMATICA GRADO 9 II PERIODO PROF. LIC. ESP. BLANCA NIEVES CASTILLO R. CORREO: cel GUIA DE TEORIA NO. 1 LO QUE DEBO SABER Regla de Cramer Un sistema de ecuaciones lineales se dice de Cramer cuando cumple las siguientes condiciones: Es un sistema cuadrado, con igual número de ecuaciones

Más detalles

Tema 3: Números racionales

Tema 3: Números racionales Tema 3: Números racionales SELECCIÓN DE EJERCICIOS RESUELTOS EJERCICIOS DEL CAPÍTULO 4 (Fracciones y números racionales positivos) (Pág. 9) 22. Al examen de junio de matemáticas se presentan 3 de cada

Más detalles

UNIDAD 4. NÚMEROS DECIMALES Y OPERACIONES

UNIDAD 4. NÚMEROS DECIMALES Y OPERACIONES UNIDAD 4. NÚMEROS DECIMALES Y OPERACIONES 1. PARTES DE UN NÚMERO DECIMAL. 2. LECTURA Y ESCRITURA DE DECIMALES. 3. DESCOMPOSICIÓN DE NÚMEROS. DECIMALES Y VALOR RELATIVO DE LAS CIFRAS. 4. COMPARACIÓN Y ORDENACIÓN

Más detalles

La prueba extraordinaria de septiembre está descrita en los criterios y procedimientos de evaluación.

La prueba extraordinaria de septiembre está descrita en los criterios y procedimientos de evaluación. La prueba extraordinaria de septiembre está descrita en los criterios y procedimientos de evaluación. Los contenidos mínimos de la materia son los que aparecen con un * UNIDAD 1: LOS NÚMEROS NATURALES

Más detalles

TEMA 4: ECUACIONES Y SISTEMAS DE ECUACIONES

TEMA 4: ECUACIONES Y SISTEMAS DE ECUACIONES TEMA 4: ECUACIONES Y SISTEMAS DE ECUACIONES 1. ECUACIONES. Una ecuación es una igualdad entre dos expresiones algebraicas. Las variables en este caso se denominan incógnitas. Las soluciones de una ecuación

Más detalles

UNIDAD 6: FRACCIONES ÍNDICE. 6.1 Conocimiento de fracciones: Términos de las fracciones Representación. 6.1.

UNIDAD 6: FRACCIONES ÍNDICE. 6.1 Conocimiento de fracciones: Términos de las fracciones Representación. 6.1. UNIDAD 6: FRACCIONES ÍNDICE 6. Conocimiento de fracciones: 6.. Términos de las fracciones. 6.. Representación 6.. Interpretación 6. Lectura y escritura de fracciones. 6. Comparación de fracciones. 6..

Más detalles

COLEGIO AUGUSTO WALTE INFORMACIÓN DE ASIGNATURA I PERÍOD DESCRIPCIÓN DE CONTENIDOS

COLEGIO AUGUSTO WALTE INFORMACIÓN DE ASIGNATURA I PERÍOD DESCRIPCIÓN DE CONTENIDOS COLEGIO AUGUSTO WALTE INFORMACIÓN DE ASIGNATURA I PERÍOD DESCRIPCIÓN DE CONTENIDOS GRADO: 5 ASIGNATURA: Matemática PERIODO: I PROFESOR: María Raquel Vigil. UNIDAD Nº 1 NOMBRE DE LA UNIDAD: JUGUEMOS CON

Más detalles