Ejercicios resueltos de probabilidad


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Ejercicios resueltos de probabilidad"

Transcripción

1 Ejercicios resueltos de probabilidad 1) En un saco tenemos bolas con las letras de la palabra "MATEMÁTICAS" (en las bolas, ninguna letra tiene tilde). Sacamos cuatro bolas por orden Hay la misma probabilidad de conseguir las palabras "MATE", TEMA" y "MAMA"? 2) Ahora tenemos una urna con los números del 0 al 9, y sacamos dos bolas por orden, sin devolverlas a la urna. Halla la probabilidad de: a) formar un número de dos cifras. b) Formar un número múltiplo de 3. c) Formar un número compuesto por dos números consecutivos. 3) En una población, el 60% de las personas prefiere una dieta con mucha carne, y el 30% son vegetarianos, mientras que un 25% opta por una dieta mixta. Con estos datos, halla el porcentaje de : a) vegetarianos estrictos b) carnívoros estrictos c) gente que no sigue ninguna de las dietas anteriores d) gente que come carne o vegetales. 4) Se lanza tres veces una moneda trucada cuya probabilidad de sacar cara es la mitad de la probabilidad de cruz. Halla la probabilidad de obtener exactamente dos caras y una cruz (no necesariamente en ese orden). 5) Un amigo, a escondidas, lanza una moneda al aire y tira un dado de seis caras. Cuál es la probabilidad de que yo acierte el resultado? 6) Cuál es la probabilidad de acertar una quiniela de 14 resultados? Es un experimento aleatorio?

2 Soluciones 1) En un saco tenemos bolas con las letras de la palabra "MATEMÁTICAS" (en las bolas, ninguna letra tiene tilde). Sacamos cuatro bolas por orden Hay la misma probabilidad de conseguir las palabras "MATE", TEMA" y "MAMA"? Empezaremos con una advertencia y un consejo (luego pasaremos a resolver el ejercicio). Es frecuente que los problemas de probabilidad tengan ambigüedades o puntos sin aclarar. Por ejemplo: después de sacar cada bola la devolvemos al saco o la dejamos aparte? Cuando te encuentres con algo así, pregunta al profesor. Si no te aclara nada, conviene que en la solución del problema escribas tu versión: "Suponiendo que las bolas no se devuelven al saco..." Pues eso, suponiendo que las bolas no se devuelven al saco, hay 2 probabilidades entre 11 de que nos salga una M. Con una bola menos, luego hay 3 probabilidades entre 10 de que salga una A; 2 entre 9 de conseguir después una T y finalmente 1 entre 8 de terminar con la E. Por lo tanto, la probabilidad de conseguir la palabra "MATE" será de: 2/11 3/10 2/9 1/8 = 12/7920 = 4/2640 = 1/660 Siguiendo el mismo razonamiento, calculamos las probabilidades para las otras dos palabras: TEMA --> 2/11 1/10 2/9 3/8 = 1/660 MAMA --> 2/11 3/10 1/9 2/8 = 1/660 Por lo tanto, las tres palabras tienen las mismas probabilidades de salir. 2) Ahora tenemos una urna con los números del 0 al 9, y sacamos dos bolas por orden, sin devolverlas a la urna. Halla la probabilidad de: a) formar un número de dos cifras. b) Formar un número múltiplo de 3. c) Formar un número compuesto por dos números consecutivos. Este problema es básicamente igual al anterior (aunque aquí sí nos aclara que las bolas no se devuelven). Vamos con cada apartado. a) Cuando nos pregunta por un número de dos cifras, significa que la primera bola no puede ser un cero. La combinación 05 no es válida, por ejemplo. Entonces, para la primera bola, nos sirven 9 bolas (probabilidad 9/10); para la segunda nos vuelven a valer 9 (una bola ya está fuera, pero ahora sí vale el cero), por lo tanto de nuevo es 9/10. p = 9/10 9/10 = 81/100

3 b) Para que el número sea múltiplo de 3, las cifras tienen que sumar múltiplo de 3. Las combinaciones posibles son: 0 y 9, 0 y 6, 0 y 3, 1 y 8, 1 y 5, 1 y 2, 2 y 7, 2 y 4, 3 y 9, 3 y 6, 4 y 5, y todas las anteriores en orden invertido. En total, 22 posibilidades de un total de 100. p = 22/100 = 11/50 c) Ahora los números deben ser consecutivos. Pues de nuevo a hacer recuento de posibilidades: 0 y 1, 1 y 2, 2 y 3, 3 y 4, 4 y 5, 5 y 6, 6 y 7, 7 y 8, 8 y 9. En total 9, de un total de 100. p = 9/100 3) En una población, el 60% de las personas prefiere una dieta con mucha carne, y el 30% son vegetarianos, mientras que un 25% opta por una dieta mixta. Con estos datos, halla el porcentaje de : a) vegetarianos estrictos b) carnívoros estrictos c) gente que no sigue ninguna de las dietas anteriores d) gente que come carne o vegetales. Si tienes dudas con este ejercicio, consulta nuestro documento de "Diagramas de doble círculo". Algo explicaremos aquí, de todas formas. Como decimos allí, para este tipo de problemas conviene situar los datos en un esquema como este: Así, dentro del círculo marcado con la A colocaremos el 60% que corresponde a los "carnívoros"; dentro del círculo B, el 30% que son los vegetarianos, y en la zona que queda entre ambos, el 25% que son los de dieta mixta. Organizando el diagrama en cuatro zonas, los porcentajes se repartirían así:

4 En la zona amarilla hay un 35% porque son los 60% carnívoros menos el 25% de los que son carnívoros pero también comen verdura (los de la zona verde). El 5% de la zona azul se saca de la misma manera (30% - 25%). El 35% de la zona marrón es el 100% menos la suma de los porcentajes contenidos en las otras zonas. Ahora responder a los apartados es fácil, si sabemos identificar cada apartado con su zona correspondiente: a) Vegetarianos estrictos: zona azul (los que comen verdura pero no carne). 5% b) Carnívoros estrictos: zona amarilla. 35% c) Gente que no sigue ninguna de las dietas: zona marrón. 35%. d) Gente que come carne o vegetales: ahora nos valen los que comen sólo carne, los que comen sólo verduras y los que comen ambas cosas. Por lo tanto, es la suma de las zonas amarilla, verde y azul: 65%. También puede cualcularse como 100% - 35% (los que no comen ninguna de las dos cosas). 4) Se lanza tres veces una moneda trucada cuya probabilidad de sacar cara es la mitad de la probabilidad de cruz. Halla la probabilidad de obtener exactamente dos caras y una cruz (no necesariamente en ese orden). Lo primero es calcular las probabilidades de cara y de cruz. Es fácil si te acuerdas de que la suma de todas las probabilidades posibles debe sumar 1. Por lo tanto, si llamamos p a la probabilidad de cara, la probabilidad de cruz será de 2p (también podríamos haber llamado p a cruz y 1/2p a cara; al gusto de cada cual). p + 2p = 1 3p = 1 p = 1/3 Entonces la probabilidad de cara es 1/3, y la de cruz, 2/3. Cuál es la probabilidad de cara-cara-cruz? Como son sucesos independientes, basta con mutliplicar las probabilidades de cada suceso elemental: p (CCX) = 1/3 1/3 2/3 = 2/27 Pero como nos dice que no tiene por qué ocurrir en ese orden, tenemos que sumar a esta probabilidad las correspondientes a las combinaciones CXC y XCC. Como estos otros dos sucesos tienen la misma probabilidad que el primero (calcúlalo si no te fías), la probabilidad que buscamos es de: p (dos caras y una cruz) = 3 2/27 = 6/27 = 2/9

5 5) Un amigo, a escondidas, lanza una moneda al aire y tira un dado de seis caras. Cuál es la probabilidad de que yo acierte el resultado? Vamos a imaginar que el resultado que digo a mi amigo es de cruz y un cinco. Qué probabilidad hay de que eso sea cierto? Lanzar una moneda y un dado son sucesos claramente independientes, por lo que la probabilidad total será el producto de las dos probabilidades simples. p (cruz) = 1/2 p (5) = 1/6 p (cruz y 5) = 1/2 1/6 = 1/12 Fíjate que para resolver el problema es indiferente que digamos cruz y 5, cara y 6 o cualquier otra posibilidad. Eso sólo sirve para visualizar mejor la solución. En cualquier caso, el resultado es el mismo. Un añadido: si el enunciado nos dijera que tenemos tres oportunidades para acertar, bastaría con multiplicar la probabilidad calculada por 3. 6) Cuál es la probabilidad de acertar una quiniela de 14 resultados? Es un experimento aleatorio? Para los que no sepan cómo se hace una quiniela, hay que marcar un posible resultado para 14 partidos distintos. En cada uno, podemos elegir entre tres posibilidades: 1 (gana el equipo que juega en casa), X (los equipos empatan) y 2 (gana el equipo visitante). La probabilidad de acertar uno de los partidos es de 1/3. Hasta ahí fácil. Como son 14 sucesos independientes, tendríamos que multiplicar 1/3 por sí mismo 14 veces: p (14 resultados) = (1/3) 14 = 1/ La segunda pregunta del problema tiene más miga. Rellenar una quiniela es un experimento aleatorio? La respuesta es: depende. Si uno no tiene ni idea de fútbol, rellenará las casillas al azar, por lo que sí será un experimento aleatorio. Pero lo cierto es que los partidos de fútbol no se resuelven por azar. Si el que rellena la quiniela conoce qué equipos son mejores que otros, o qué equipos tienen a su jugador estrella lesionado, tendrá más probabilidades de acertar. En ese caso, no es una experiencia aleatoria.

Probabilidad. a) Determinista. c) Aleatorio. e) Determinista. b) Aleatorio. d) Aleatorio.

Probabilidad. a) Determinista. c) Aleatorio. e) Determinista. b) Aleatorio. d) Aleatorio. Probabilidad 08 Clasifica estos experimentos en aleatorios o deterministas. a) Lanzar una piedra al aire y verificar si cae al suelo o no. b) Hacer una quiniela y comprobar los resultados. c) Predecir

Más detalles

MATEMÁTICAS PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES 25 AÑOS. UNIDAD DIDÁCTICA 13: Nociones elementales de probabilidad

MATEMÁTICAS PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES 25 AÑOS. UNIDAD DIDÁCTICA 13: Nociones elementales de probabilidad UNIDAD DIDÁCTICA 3: Nociones elementales de probabilidad. ÍNDICE. ÍNDICE 2. INTRODUCCIÓN GENERAL A LA UNIDAD Y ORIENTACIONES PARA EL ESTUDIO 3. OBJETIVOS ESPECÍFICOS 4. CONTENIDOS Sucesos equiprobables

Más detalles

Experimento determinista. Experimento aleatorio. Espacio muestral. Suceso elemental. Suceso seguro. Suceso imposible.

Experimento determinista. Experimento aleatorio. Espacio muestral. Suceso elemental. Suceso seguro. Suceso imposible. 86464 _ 04-047.qxd //07 09:4 Página 4 Probabilidad INTRODUCCIÓN El estudio matemático de la probabilidad surge históricamente vinculado a los juegos de azar. Actualmente la probabilidad se utiliza en muchas

Más detalles

EJERCICIOS DE PROBABILIDAD.

EJERCICIOS DE PROBABILIDAD. EJERCICIOS DE PROBABILIDAD. 1. a) Se escoge al azar una letra de la palabra PROBABILIDAD. Indica la probabilidad del suceso A = sea la letra A y del suceso B = sea una consonante. b) Halla la probabilidad

Más detalles

2. Encuentra el espacio muestral del experimento lanzar dos monedas. Si se define el suceso A = al menos una sea cara, de cuántos sucesos elementales

2. Encuentra el espacio muestral del experimento lanzar dos monedas. Si se define el suceso A = al menos una sea cara, de cuántos sucesos elementales 2. Encuentra el espacio muestral del experimento lanzar dos monedas. Si se define el suceso A = al menos una sea cara, de cuántos sucesos elementales consta A? Cuál es el suceso contrario de A? 3. Si consideramos

Más detalles

PROBLEMAS DE PROBABILIDAD. 3. Calcula la probabilidad de que al lanzar dos dados la suma de sus puntos sea: a) igual a 5 b) mayor que 10

PROBLEMAS DE PROBABILIDAD. 3. Calcula la probabilidad de que al lanzar dos dados la suma de sus puntos sea: a) igual a 5 b) mayor que 10 1. Se lanza un dado. Halla la probabilidad: a) de salir el 3 b) de salir un número par c) de salir un número mayor que 2 PROBLEMAS DE PROBABILIDAD 2. Calcula la probabilidad de que al lanzar dos monedas:

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 00 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA : PROBABILIDAD Junio, Ejercicio 3, Parte I, Opción A Junio, Ejercicio 3, Parte I, Opción B Reserva, Ejercicio

Más detalles

10 9 Sacamos una bola y anotamos el número. a) Es una experiencia aleatoria? b) Escribe el espacio muestral y seis sucesos.

10 9 Sacamos una bola y anotamos el número. a) Es una experiencia aleatoria? b) Escribe el espacio muestral y seis sucesos. 13 Soluciones a las actividades de cada epígrafe PÁGINA 132 1 En una urna hay 10 bolas de cuatro colores. Sacamos una bola y anotamos su color. a) Es una experiencia aleatoria? b) Escribe el espacio muestral

Más detalles

UNIDAD DIDÁCTICA 14: Nociones elementales de probabilidad

UNIDAD DIDÁCTICA 14: Nociones elementales de probabilidad accés a la universitat dels majors de 25 anys acceso a la universidad de los mayores de 25 años UNIDAD DIDÁCTICA 14: Nociones elementales de probabilidad ÍNDICE: CONTENIDOS 1 Sucesos equiprobables 2 La

Más detalles

TEORÍA Y EJERCICIOS RESUELTOS DE COMBINATORIA Y PROBABILIDAD. Notas teóricas

TEORÍA Y EJERCICIOS RESUELTOS DE COMBINATORIA Y PROBABILIDAD. Notas teóricas MATEMÁTICAS º ESO TEORÍA Y EJERCICIOS RESUELTOS DE COMBINATORIA Y PROBABILIDAD Juan J. Pascual COMBINATORIA Y PROBABILIDAD Notas teóricas - Variaciones: Las variaciones son agrupaciones ordenadas de objetos

Más detalles

R E S O L U C I Ó N. Hacemos un diagrama de árbol. 5 B 3 N 2 R 4 B 4 B 6 N = =

R E S O L U C I Ó N. Hacemos un diagrama de árbol. 5 B 3 N 2 R 4 B 4 B 6 N = = Dos urnas A y B, que contienen bolas de colores, tienen la siguiente composición: A : blancas, 3 negras y rojas; B : blancas y negras También tenemos un dado que tiene caras marcadas con la letra A y las

Más detalles

Lanzamos 1 dado y comprobamos cuál es el resultado que aparece en la cara superior.

Lanzamos 1 dado y comprobamos cuál es el resultado que aparece en la cara superior. Curso ON LINE Tema 01 SÓLO ENUNCIADOS. PROBABILIDADES I Lanzamos 1 dado y comprobamos cuál es el resultado que aparece en la cara superior. 001 002 003 004 005 Lanzamos 1 dado y comprobamos cuál es el

Más detalles

Se llaman sucesos aleatorios a aquellos acontecimientos en cuya realización influye el azar.

Se llaman sucesos aleatorios a aquellos acontecimientos en cuya realización influye el azar. . SUCESOS ALEATORIOS. En nuestra vida diaria nos encontramos con muchos acontecimientos de los que no podríamos predecir si ocurrirán o no, como por ejemplo si me tocará la lotería, el número que saldrá

Más detalles

CÁLCULO DE PROBABILIDADES

CÁLCULO DE PROBABILIDADES CÁLCULO DE PROBABILIDADES 1. Regla de Laplace. Ejercicio 1. (2005) Ejercicio 2. (2004) María y Laura idean el siguiente juego: cada una lanza un dado, si en los dos dados sale el mismo número, gana Laura;

Más detalles

Ámbito Científico-Tecnológico Módulo IV Bloque 6 Unidad 6 Cara o cruz

Ámbito Científico-Tecnológico Módulo IV Bloque 6 Unidad 6 Cara o cruz Ámbito Científico-Tecnológico Módulo IV Bloque 6 Unidad 6 Cara o cruz Me tocará? No me tocará? Si jugamos al parchís, sacaré un cinco para salir de casa? No lo sabemos, todo depende de la suerte o el azar.

Más detalles

MATEMÁTICAS 4º ESO. TEMA 3: PROBABILIDAD

MATEMÁTICAS 4º ESO. TEMA 3: PROBABILIDAD MTEMÁTICS 4º ESO. TEM 3: PROBBILIDD 3.1 Sucesos 3.2 Definición de probabilidad 3.3 Probabilidad condicionada 3.4 Probabilidad de la intersección de sucesos 3.5 Probabilidad de la unión de sucesos 3.6 Probabilidad

Más detalles

Materia: Matemática de Octavo Tema: Sucesos. Marco teórico

Materia: Matemática de Octavo Tema: Sucesos. Marco teórico Materia: Matemática de Octavo Tema: Sucesos En esta lección aprenderás términos básicos de la estadística y algunas reglas de la probabilidad. También aprenderás cómo enumerar eventos simples y muestras

Más detalles

También son experimentos aleatorios: lanzar una moneda, sacar una bola de una bolsa, sacar una carta de la baraja, etc.

También son experimentos aleatorios: lanzar una moneda, sacar una bola de una bolsa, sacar una carta de la baraja, etc. 3º ESO E UNIDAD 16.- SUCESOS ALEATORIOS. PROBABILIDAD PROFESOR: RAFAEL NÚÑEZ -------------------------------------------------------------------------------------------------------------------------------------

Más detalles

GRUPO PI. Sandra Gallardo; María Consuelo Cañadas; Manuel J. Martínez-Santaolalla; Marta Molina; Maria Peñas

GRUPO PI. Sandra Gallardo; María Consuelo Cañadas; Manuel J. Martínez-Santaolalla; Marta Molina; Maria Peñas 2. PROBABILIDAD. Taller: JUGANDO CON LA PROBABILIDAD. Autores: GRUPO PI. Sandra Gallardo; María Consuelo Cañadas; Manuel J. Martínez-Santaolalla; Marta Molina; Maria Peñas Juego 1: Cruzar el río. Observa

Más detalles

el blog de mate de aida PROBABILIDAD 4º ESO PROBABILIDAD

el blog de mate de aida PROBABILIDAD 4º ESO PROBABILIDAD Pág.1 PROBABILIDAD EXPERIMENTOS ALEATORIOS. SUCESOS. Experimento determinista es aquel en que se puede predecir el resultado, siempre que se realice en las mismas condiciones. (Ejemplo: medir el tiempo

Más detalles

EJERCICIOS DE PROBABILIDAD

EJERCICIOS DE PROBABILIDAD Ejercicio nº 1.- Qué es una experiencia aleatoria? De las siguientes experiencias, cuáles son aleatorias? a) En una caja hay cinco bolas amarillas, sacamos una bola y anotamos su color. b) Lanzamos una

Más detalles

el blog de mate de aida PROBABILIDAD 4º ESO PROBABILIDAD

el blog de mate de aida PROBABILIDAD 4º ESO PROBABILIDAD Pág.1 PROBABILIDAD EXPERIMENTOS ALEATORIOS. SUCESOS. Experimento determinista es aquel en que se puede predecir el resultado, siempre que se realice en las mismas condiciones. (Ejemplo: medir el tiempo

Más detalles

a) la primera de las monedas es cara. b) por lo menos una de las monedas es cara.

a) la primera de las monedas es cara. b) por lo menos una de las monedas es cara. Estadística II Ejercicios Instrucciones: Resolver los siguientes problemas. Entregar un trabajo por grupo el día del primer parcial, el trabajo deberá tener carátula con los nombres de los integrantes

Más detalles

Al conjunto de todos los sucesos que ocurren en un experimento aleatorio se le llama espacio de sucesos y se designa por S. Algunos tipos de sucesos:

Al conjunto de todos los sucesos que ocurren en un experimento aleatorio se le llama espacio de sucesos y se designa por S. Algunos tipos de sucesos: 1.- CÁLCULO DE PROBABILIDADES. Un experimento aleatorio es aquel que puede dar lugar a varios resultados, sin que pueda ser previsible enunciar con certeza cuál de éstos va a ser observado en la realización

Más detalles

El caballero Mere escribe a Pascal en 1654 y le propone el siguiente problema:

El caballero Mere escribe a Pascal en 1654 y le propone el siguiente problema: Introducción Los fundamentos del cálculo de probabilidades surgen alrededor del año 1650, cuando sugerido por los juegos de dados, de cartas, del lanzamiento de una moneda, se planteó el debate de determinar

Más detalles

RELACIÓN EJERCICIOS PROBABILIDAD 4º B CURSO

RELACIÓN EJERCICIOS PROBABILIDAD 4º B CURSO RELACIÓN EJERCICIOS PROBABILIDAD 4º B CURSO 00- Sea el experimento consistente en lanzar un dado cúbico y los sucesos A={,,3} y B={3,4}. Halla A I B Lanzamos un dado cúbico, cuál es la probabilidad de

Más detalles

OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Experimento determinista. Experimento aleatorio. Espacio muestral. Suceso elemental.

OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Experimento determinista. Experimento aleatorio. Espacio muestral. Suceso elemental. Probabilidad INTRODUCCIÓN El estudio matemático de la probabilidad surge históricamente vinculado a los juegos de azar. Actualmente la probabilidad se utiliza en muchas disciplinas unidas a la Estadística:

Más detalles

Problema 15.3. Observa las siguientes urnas y contesta las cuestiones que siguen:

Problema 15.3. Observa las siguientes urnas y contesta las cuestiones que siguen: 15 Probabilidad Ejercicio 15.1. Indica cuáles de los siguientes sucesos son aleatorios y cuáles no: a) Lanzar una moneda. b) Aprobar un examen de matemáticas. c) Acertar una quiniela de fútbol. d) Lanzar

Más detalles

MATEMÁTICA MÓDULO 2 Eje temático: Estadística y probabilidades

MATEMÁTICA MÓDULO 2 Eje temático: Estadística y probabilidades MATEMÁTICA MÓDULO 2 Eje temático: Estadística y probabilidades 1. REGLA DE LAPLACE Cuando un suceso va a ocurrir, en ciertos casos es posible que se pueda predecir su resultado. Si se puede predecir diremos

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. Página PRACTICA Muy probable, poco probable Tenemos muchas bolas de cada uno de los siguientes colores: negro (N), rojo (R), verde (V) y azul (A), y una gran caja vacía. Echamos en la caja R, 0 V

Más detalles

TEMA 11. PROBABILIDAD

TEMA 11. PROBABILIDAD TEMA 11. PROBABILIDAD 11.1. Experimentos aleatorios. - Espacio muestral asociado a un experimento aleatorio. - Sucesos. Operaciones con sucesos. 11.2. Probabilidad. - Regla de Laplace 11.3. Experiencias

Más detalles

EJERCICIOS PROBABILIDAD

EJERCICIOS PROBABILIDAD EJERCICIOS PROBABILIDAD 0. Razona y di si los siguientes experimentos son aleatorios o deterministas: Dejar caer una moneda desde una altura determinada y medir el tiempo que tarda en llegar al suelo.

Más detalles

TEMA 14 PROBABILIDAD

TEMA 14 PROBABILIDAD Objetivos / Criterios de evaluación TEMA 14 PROBABILIDAD O.16.1 Conocer el concepto de suceso aleatorio y sus tipos y operaciones. O.16.2 Cálculo de probabilidades de sucesos simples. Regla de Laplace.

Más detalles

PROBABILIDAD. Profesor: Rafael Núñez Nogales CÁLCULO DE PROBABILIDADES. Experimentos y sucesos

PROBABILIDAD. Profesor: Rafael Núñez Nogales CÁLCULO DE PROBABILIDADES. Experimentos y sucesos PROBABILIDAD CÁLCULO DE PROBABILIDADES Experimentos y sucesos Experimento aleatorio Es aquel cuyo resultado depende del azar, es decir no se puede predecir de antemano qué resultado se va a obtener aunque

Más detalles

TEMA 1.2: PROBABILIDAD COMPUESTA

TEMA 1.2: PROBABILIDAD COMPUESTA TEMA.2: PROBABILIDAD COMPUESTA.- INTRODUCCIÓN. RESULTADOS DE DOS SUCESOS Cuando trabajamos con probabilidades de dos sucesos, es importante ser capaz de identificar todas las posibles alternativas. Veámoslo

Más detalles

Si dos sucesos A y B son incompatibles, P(A"B) = 0 P(AUB) = P(A) + P(B)

Si dos sucesos A y B son incompatibles, P(AB) = 0 P(AUB) = P(A) + P(B) RESUMEN PROBABILIDAD OPERACIONES CON SUCESOS: Unión Intersección Diferencia Diferencia Diferencia simétrica (A o B) (A y B) (Sólo suceso A) (Sólo suceso B) (Sólo suceso A o B) PROPIEDADES DE SUCESOS: Distributiva:

Más detalles

PROBABILIDAD. Experiencia aleatoria es aquella cuyo resultado depende del azar.

PROBABILIDAD. Experiencia aleatoria es aquella cuyo resultado depende del azar. PROBABILIDAD. 1 EXPERIENCIAS ALEATORIAS. SUCESOS. Experiencia aleatoria es aquella cuyo resultado depende del azar. Suceso aleatorio es un acontecimiento que ocurrirá o no dependiendo del azar. Espacio

Más detalles

Tema 11 Cálculo de Probabilidades.

Tema 11 Cálculo de Probabilidades. Tema 11 Cálculo de Probabilidades. 11.1 Experimentos aleatorios. Espacio muestral PÁGINA 248 EJERCICIOS 1. Decide si los siguientes experimentos son aleatorios o deteministas. a) Medir apotemas de un pentágono

Más detalles

1. Lanzamos una moneda 400 veces. Halla la probabilidad de que el número de caras sea mayor que 200.

1. Lanzamos una moneda 400 veces. Halla la probabilidad de que el número de caras sea mayor que 200. 1. Lanzamos una moneda 400 veces. Halla la probabilidad de que el número de caras sea mayor que 200. 2. Lanzamos una moneda 400 veces. Halla la probabilidad de que el número de caras esté entre 180 y 220.

Más detalles

Calcular probabilidad clásica mediante regla de Laplace. Reconocer elementos básicos en las probabilidades.

Calcular probabilidad clásica mediante regla de Laplace. Reconocer elementos básicos en las probabilidades. Guía N 16 Nombre: Fecha: Contenidos: Probabilidad Clásica Objetivos: Calcular probabilidad clásica mediante regla de Laplace. Reconocer elementos básicos en las probabilidades. NOCIONES ELEMENTALES Experimento:

Más detalles

Guía Matemática NM 4: Probabilidades

Guía Matemática NM 4: Probabilidades Centro Educacional San Carlos de Aragón. Dpto. Matemática. Prof.: Ximena Gallegos H. Guía Matemática NM : Probabilidades Nombre: Curso: Aprendizaje Esperado: Determinar la probabilidad de ocurrencia de

Más detalles

Ejercicios elementales de Probabilidad

Ejercicios elementales de Probabilidad Ejercicios elementales de Probabilidad 1. Se extrae una carta de una baraja de 52 naipes. Halla la probabilidad de que sea: (a) Un rey. (b) Una carta roja. (c) El 7 de tréboles. (d) Una figura de diamantes.

Más detalles

UNIVERSIDAD DE LA SALLE

UNIVERSIDAD DE LA SALLE UNIVERSIDAD DE LA SALLE Taller Probabilidad Básica. Bioestadística. 1. Determine cuáles de los siguientes experimentos son aleatorios y en caso afirmativo hallar su espacio muestral: (a) Extraer una carta

Más detalles

Matemáticas Propedéutico para Bachillerato. Introducción

Matemáticas Propedéutico para Bachillerato. Introducción Actividad 5. Nociones básicas de Probabilidad y Estadística. Introducción Alguna vez te has preguntado qué es la estadística? Y más aún eso a mi para qué me sirve? La estadística no es sino un sistema

Más detalles

Espacio muestral. Operaciones con sucesos

Espacio muestral. Operaciones con sucesos Matemáticas CCSS. 1º Bachiller Tema 12. Probabilidad Espacio muestral. Operaciones con sucesos 1. Determina el espacio muestral de los siguientes experimentos a) Lanzar una moneda y anotar el resultado

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. Página PRACTICA Sucesos Lanzamos tres veces una moneda y anotamos si sale cara o cruz. a) Escribe el espacio muestral. b) Escribe el suceso A la primera vez salió cara. c) Cuál es el suceso contrario

Más detalles

CUADERNO DE RECUPERACIÓN VERANO 2014 MATEMÁTICAS 3º E.S.O.

CUADERNO DE RECUPERACIÓN VERANO 2014 MATEMÁTICAS 3º E.S.O. CUADERNO DE RECUPERACIÓN VERANO 0 MATEMÁTICAS º E.S.O. COLEGIO MAESTRO ÁVILA Y SANTA TERESA ALUMNO: www.benitopb.wordpress.com TEMA NÚMEROS REALES www.benitopb.wordpress.com TEMA PROPORCIONALIDAD www.benitopb.wordpress.com

Más detalles

Espacio Muestral, se denota con la letra S, y representa el conjunto de todos los sucesos aleatorios. Por ejemplo: Si tiramos una moneda el espacio se sucesos está formado por: S= {Ø, {C}, {X}, {C,X}}.

Más detalles

EJERCICIOS I APLICACIÓN DE LA REGLA DE LAPLACE

EJERCICIOS I APLICACIÓN DE LA REGLA DE LAPLACE EJERCICIOS I APLICACIÓN DE LA REGLA DE LAPLACE 1) Se considera el experimento aleatorio de lanzar un dado. Se pide la probabilidad de obtener a) Número par b) Número par c) Múltiplo de 3 d) Múltiplo de

Más detalles

TEMA 1: PROBABILIDAD

TEMA 1: PROBABILIDAD TEMA 1: PROBABILIDAD Ejercicios 1- alcular el espacio muestral asociado a los siguientes experimentos: a) Lanzar una moneda b) Tirar un dado c) Lanzar un dado de quinielas d) Extraer una bola de una caja

Más detalles

NOMBRE: a) Sacar par al tirar un dado a) Sacar impar al tirar un dado b) Al lanzar el dado dos veces, se obtenga una suma de puntos igual a 7.

NOMBRE: a) Sacar par al tirar un dado a) Sacar impar al tirar un dado b) Al lanzar el dado dos veces, se obtenga una suma de puntos igual a 7. (espacios muestrales, sucesos compatibles e incompatibles) 1 1. Consideremos el experimento que consiste en la extracción de tres bombillas de una caja que contiene bombillas buenas y defectuosas. Se pide

Más detalles

Problemas de probabilidad: binomial

Problemas de probabilidad: binomial Problemas de probabilidad: binomial 1) Un jugador de baloncesto tiene un porcentaje de encestar del 5%. Calcula la probabilidad de que en 9 lanzamientos enceste exactamente 5 veces. 2) Un juego consiste

Más detalles

CUADERNO Nº 12 NOMBRE: FECHA: / / Probabilidad. Hallar el espacio muestral y distintos sucesos de un experimento aleatorio.

CUADERNO Nº 12 NOMBRE: FECHA: / / Probabilidad. Hallar el espacio muestral y distintos sucesos de un experimento aleatorio. Probabilidad Contenidos 1. Experimentos aleatorios Espacio muestral y sucesos Técnicas de recuento Operaciones con sucesos Propiedades 2. Probabilidad Probabilidad de un suceso Regla de Laplace Propiedades

Más detalles

1.- EXPERIMENTOS ALEATORIOS

1.- EXPERIMENTOS ALEATORIOS -- TEMA 5.- PROBABILIDAD 1.- EXPERIMENTOS ALEATORIOS Si lanzamos un dado y observamos el resultado obtenido. Ejercicio 1. 1 Describe el espacio muestral en los siguientes Observa que se cumple: experimentos

Más detalles

14 Probabilidad. Qué tienes que saber? Actividades finales. Sugerencias didácticas. Soluciones de las actividades

14 Probabilidad. Qué tienes que saber? Actividades finales. Sugerencias didácticas. Soluciones de las actividades 14 Probabilidad Qué tienes que saber? 14 QUÉ tienes que saber? ctividades Finales 14 Ten en cuenta Un experimento aleatorio es aquel que tiene un resultado que no se puede predecir. Los sucesos aleatorios

Más detalles

Probabilidad. Contenidos. Objetivos. 1. Experimentos aleatorios Espacio muestral y sucesos Operaciones con sucesos Sucesos compatibles, incompatibles

Probabilidad. Contenidos. Objetivos. 1. Experimentos aleatorios Espacio muestral y sucesos Operaciones con sucesos Sucesos compatibles, incompatibles CUADERNO Nº 12 NOMBRE: FECHA: / / Probabilidad Contenidos 1. Experimentos aleatorios Espacio muestral y sucesos Operaciones con sucesos Sucesos compatibles, incompatibles 2. Probabilidad de un suceso La

Más detalles

JUN Tres hombres A, B y C disparan a un objetivo. Las probabilidades de que cada uno de ellos alcance el objetivo son 1 6, 1 4 y 1 3

JUN Tres hombres A, B y C disparan a un objetivo. Las probabilidades de que cada uno de ellos alcance el objetivo son 1 6, 1 4 y 1 3 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II. 1 SEP 2008. El 70% de los estudiantes aprueba una asignatura A y un 60% aprueba otra asignatura B. Sabemos, además, que un 35% del total aprueba ambas.

Más detalles

EVALUACIÓN Módulo 4 Matemática. Quinto año básico

EVALUACIÓN Módulo 4 Matemática. Quinto año básico EVALUACIÓN Módulo 4 Matemática Quinto año básico Mi nombre Mi curso Nombre de mi escuela Fecha 2013 Instrucciones: Lee con atención el enunciado de las preguntas y haz un círculo a la letra con la respuesta

Más detalles

Tema 6 Probabilidad. 0.-Introducción La probabilidad de un suceso es un número, comprendido entre 0 y

Tema 6 Probabilidad. 0.-Introducción La probabilidad de un suceso es un número, comprendido entre 0 y Tema 6 Probabilidad 0.-Introducción La probabilidad de un suceso es un número, comprendido entre 0 y 1, que indica las posibilidades que tiene de verificarse cuando se realiza un experimento aleatorio.

Más detalles

Introducción. 1. De acuerdo con lo visto en la animación de la introducción La probabilidad del súper clásico, contesta las siguientes preguntas.

Introducción. 1. De acuerdo con lo visto en la animación de la introducción La probabilidad del súper clásico, contesta las siguientes preguntas. RECOLECTO, ANALIZO MI DATOS Y OBTENGO MIS PROPIAS CONCLUSIONES Resolución de situaciones aleatorias mediante la regla de Laplace Introducción 1. De acuerdo con lo visto en la animación de la introducción

Más detalles

este será el espacio muestral, formado por todos los sucesos individuales o casos posibles caso

este será el espacio muestral, formado por todos los sucesos individuales o casos posibles caso EXPERIENCIA ALEATORIA: aquella cuyo resultado no podemos prever porque éste depende del azar. Cada uno de los resultados obtenidos en la experiencia aleatoria se llama CASO y al conjunto de todos los casos

Más detalles

UNIDAD XI Eventos probabilísticos

UNIDAD XI Eventos probabilísticos UNIDAD XI Eventos probabilísticos UNIDAD 11 EVENTOS PROBABILÍSTICOS Muchas veces ocurre que al efectuar observaciones en situaciones análogas y siguiendo procesos idénticos se logaran resultados diferentes;

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD Junio, Ejercicio 3, Parte I, Opción A Junio, Ejercicio 3, Parte I, Opción B Reserva 1,

Más detalles

2012-2013 2º ESO APLICACIÓN DE LAS FRACCIONES Y DE LA PRORCIONALIDAD AL CÁLCULO DE LA PROBABILIDAD

2012-2013 2º ESO APLICACIÓN DE LAS FRACCIONES Y DE LA PRORCIONALIDAD AL CÁLCULO DE LA PROBABILIDAD º ESO APLICACIÓN DE LAS FRACCIONES Y DE LA PRORCIONALIDAD AL CÁLCULO DE LA PROBABILIDAD Experiencias aleatorias La lotería, las rifas, el lanzar un dado, la bola de un bingo, etc. Son hechos, acciones,

Más detalles

UNIDAD II Eventos probabilísticos

UNIDAD II Eventos probabilísticos UNIDAD II Eventos probabilísticos UNIDAD 2 EVENTOS PROBABILÍSTICOS Muchas veces ocurre que al efectuar observaciones en situaciones análogas y siguiendo procesos idénticos se logaran resultados diferentes;

Más detalles

c) Extraer una bola de una urna que contiene 20 bolas numeradas del 1 al 20 y mirar el número que tiene la bola extraída.

c) Extraer una bola de una urna que contiene 20 bolas numeradas del 1 al 20 y mirar el número que tiene la bola extraída. TEMA 11: AZAR Y PROBABILIDAD SUCESOS ALEATORIOS Se llaman sucesos aleatorios a todos aquellos acontecimientos en cuya realización influye el azar. Para estudiar el azar y sus propiedades, se realizan experiencias

Más detalles

1.- Hallar la probabilidad de obtener al menos una cara al tirar n veces una moneda.

1.- Hallar la probabilidad de obtener al menos una cara al tirar n veces una moneda. .- Hallar la probabilidad de obtener al menos una cara al tirar n veces una moneda. Si A sacar al menos una cara en n lanzamientos entonces A no sacar ninguna cara en n lanzamientos. Si A i sacar cara

Más detalles

DISTRIBUCIÓN N BINOMIAL

DISTRIBUCIÓN N BINOMIAL DISTRIBUCIÓN N BINOMIAL COMBINACIONES En muchos problemas de probabilidad es necesario conocer el número de maneras en que r objetos pueden seleccionarse de un conjunto de n objetos. A esto se le denomina

Más detalles

6 resultados posibles en total. Llamaremos suceso elemental de un experimento aleatorio a cada uno de los resultados posibles

6 resultados posibles en total. Llamaremos suceso elemental de un experimento aleatorio a cada uno de los resultados posibles TEMA Probabilidad * Experimento aleatorio: Es aquel cuyo resultado es impredecible. Ej. Lanzar un dado, lanzar una moneda. Una reacción química, realizada siempre en las mismas condiciones, no sería un

Más detalles

Relación de Problemas. Probabilidad

Relación de Problemas. Probabilidad Relación de Problemas. Probabilidad 1. Se lanza una moneda tres veces y se observa si sale cara o cruz. b). Escribe los elementos que constituyen estos sucesos: 1) A=por lo menos dos caras, 2)B= las primeros

Más detalles

TEMAS BIMESTRAL. Son los experimentos de los que podemos predecir el resultado antes de que se realicen.

TEMAS BIMESTRAL. Son los experimentos de los que podemos predecir el resultado antes de que se realicen. Profesora: Mónica Marcela Parra Zapata A continuación se presentan los temas que serán evaluados en el Bimestral de estadística del grado octavo. El grado octavo 1 presentará el bimestral el miércoles

Más detalles

Curs MAT CFGS-17

Curs MAT CFGS-17 Curs 2015-16 MAT CFGS-17 Sigue la PROBABILIDAD Resumen de Probabilidad Teoría de probabilidades: La teoría de probabilidades se ocupa de asignar un cierto número a cada posible resultado que pueda ocurrir

Más detalles

Probabilidad. Si lanzamos una moneda no sabemos de antemano si saldrá cara o cruz. Teoría de probabilidades

Probabilidad. Si lanzamos una moneda no sabemos de antemano si saldrá cara o cruz. Teoría de probabilidades Experimentos deterministas Probabilidad Son los experimentos de los que podemos predecir el resultado antes de que se realicen. Si dejamos caer una piedra desde una ventana sabemos, sin lugar a dudas,

Más detalles

FICHA DE TRABAJO DE CÁLCULO DE PROBABILIDADES

FICHA DE TRABAJO DE CÁLCULO DE PROBABILIDADES FICHA DE TRABAJO DE CÁLCULO DE PROBABILIDADES EXPERIMENTO ALEATORIO: ESPACIO MUESTRAL Y SUCESOS 1) Se considera el experimento que consiste en la extracción de tres tornillos de una caja que contiene tornillos

Más detalles

Conceptos. Experimento Aleatorio: Es un fenómeno en el que interviene el azar, es decir no se puede predecir el resultado.

Conceptos. Experimento Aleatorio: Es un fenómeno en el que interviene el azar, es decir no se puede predecir el resultado. Teresa Pérez P DíazD Profesora de matemática tica Conceptos Experimento Aleatorio: Es un fenómeno en el que interviene el azar, es decir no se puede predecir el resultado. Ejemplos: E : Lanzar un dado,

Más detalles

Probabilidad E x p e r i m e n t o s d e t e r m i n i s t a s E j e m p l o E x p e r i m e n t o s a l e a t o r i o s a z a r E j e m p l o s

Probabilidad E x p e r i m e n t o s d e t e r m i n i s t a s E j e m p l o E x p e r i m e n t o s a l e a t o r i o s a z a r E j e m p l o s Probabilidad Experimentos deterministas Son los experimentos de los que podemos predecir el resultado antes de que se realicen. Ejemplo Si dejamos caer una piedra desde una ventana sabemos, sin lugar a

Más detalles

Probabilidad del suceso imposible

Probabilidad del suceso imposible 2º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II TEMA 4.- PROBABILIDAD PROFESOR: RAFAEL NÚÑEZ -----------------------------------------------------------------------------------------------------------------------------------------------------------------

Más detalles

1 Sea el experimento aleatorio que consiste en sacar una carta de una baraja española. Escribe: a) El suceso contrario a. . Cuántas posibilidades hay?

1 Sea el experimento aleatorio que consiste en sacar una carta de una baraja española. Escribe: a) El suceso contrario a. . Cuántas posibilidades hay? 1 Sea el experimento aleatorio que consiste en sacar una carta de una baraja española. Escribe: a) El suceso contrario a b) El suceso contrario a A {sacaruna figura}. Cuántas posibilidades hay? B {sacaruna

Más detalles

Pensamiento probabilístico

Pensamiento probabilístico Pensamiento probabilístico por Sandra Pérez Márquez CONCEPTOS BÁSICOS Experimento: Dentro del área probabilística, un experimento es definido como un fenómeno que ocurre en la naturaleza y específicamente,

Más detalles

Probabilidad PROBABILIDAD

Probabilidad PROBABILIDAD PROBABILIDAD La probabilidad es un método mediante el cual se obtiene la frecuencia de un suceso determinado mediante la realización de un experimento aleatorio, del que se conocen todos los resultados

Más detalles

Ejercicios de probabilidad

Ejercicios de probabilidad 1. Dos personas juegan con una moneda, a cara (C) o escudo (E). La que apuesta por la cara gana cuando consiga dos caras seguidas o, en su defecto, tres caras; análogamente con el escudo. El juego acaba

Más detalles

EJERCICIOS DE ESTADÍSTICA Y PROBABILIDAD (2ºeso)

EJERCICIOS DE ESTADÍSTICA Y PROBABILIDAD (2ºeso) EJERCICIOS DE ESTADÍSTICA Y PROBABILIDAD (2ºeso) 1.- Completa las siguientes tablas de frecuencias con las frecuencias relativas, los porcentajes, y, cuando sea posible, con las frecuencias y porcentajes

Más detalles

19y20 Cálculo de probabilidades.

19y20 Cálculo de probabilidades. ACTIVIDADES DE REFUERZO 9y20 Cálculo de probabilidades. Probabilidad compuesta. Consideremos el experimento consistente en extraer una carta de una baraja española y anotar su palo. Sean los sucesos A:

Más detalles

Tema 15: Azar y probabilidad

Tema 15: Azar y probabilidad Tema 5: Azar y probabilidad 5 5. Sucesos aleatorios Ejemplo. Si lanzamos dos monedas, cuál es el espacio muestral? E XX, CC, XC, CX cúal es el suceso al menos una cruz? XC, CX, XX cuál es el suceso salir

Más detalles

(DOCUMENTO DE TRABAJO ELABORADO A PARTIR DE RECURSOS ENCONTRADOS EN LA WEB: AULAFACIL 1 Y VADENUMEROS 2 )

(DOCUMENTO DE TRABAJO ELABORADO A PARTIR DE RECURSOS ENCONTRADOS EN LA WEB: AULAFACIL 1 Y VADENUMEROS 2 ) PROBABILIDAD (DOCUMENTO DE TRABAJO ELABORADO A PARTIR DE RECURSOS ENCONTRADOS EN LA WEB: AULAFACIL 1 Y VADENUMEROS 2 ) La probabilidad mide la frecuencia relativa (proporción) de un resultado determinado

Más detalles

PROBLEMAS DE PROBABILIDAD. BOLETIN II..1 Hallar la probabilidad de sacar una suma de 8 puntos al lanzar dos dado.

PROBLEMAS DE PROBABILIDAD. BOLETIN II..1 Hallar la probabilidad de sacar una suma de 8 puntos al lanzar dos dado. PROBLEMAS DE PROBABILIDAD. BOLETIN II.1 Hallar la probabilidad de sacar una suma de 8 puntos al lanzar dos dado. 2. Hallar la probabilidad de sacar por suma o bien 4, o bien 11 al lanzar dos dados. 3.

Más detalles

EJERCICIOS DE PROBABILIDAD

EJERCICIOS DE PROBABILIDAD EJERCICIOS DE ROBABILIDAD Ejercicio nº 1.- Lanzamos dos dados sobre la mesa y anotamos los dos números obtenidos. a) Cuántos elementos tiene el espacio muestral? b) Describe los sucesos: A "Obtener al

Más detalles

Tutorial MT-a3. Matemática Tutorial Nivel Avanzado. Probabilidad y estadística

Tutorial MT-a3. Matemática Tutorial Nivel Avanzado. Probabilidad y estadística 12345678901234567890 M ate m ática Tutorial MT-a3 Matemática 2006 Tutorial Nivel Avanzado Probabilidad y estadística Matemática 2006 Tutorial Probabilidad y estadística Marco Teórico 1. Probabilidad P(#)

Más detalles

Unidad Temática 2 Probabilidad

Unidad Temática 2 Probabilidad Unidad Temática 2 Probabilidad Responda verdadero o falso. Coloque una letra V a la izquierda del número del ítem si acepta la afirmación enunciada, o una F si la rechaza. 1. El experimento que consiste

Más detalles

Ejercicios de Cálculo de Probabilidades

Ejercicios de Cálculo de Probabilidades Ejercicios de Cálculo de Probabilidades Ejercicio nº 1.- De una bolsa que tiene 10 bolas numeradas del 0 al 9, se extrae una bola al azar. a Cuál es el espacio muestral? b Describe los sucesos: A "Mayor

Más detalles

INECUACIONES Y SISTEMAS DE INECUACIONES LINEALES.

INECUACIONES Y SISTEMAS DE INECUACIONES LINEALES. Nombre y apellidos : Materia: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I 2ª entrega Fecha: Curso: 1º BACHILLERATO INSTRUCCIONES: Para la realización del primer examen deberás entregar en un cuaderno

Más detalles

PROBLEMAS RESUELTOS DE PROBABILIDAD

PROBLEMAS RESUELTOS DE PROBABILIDAD PROBLEMAS RESUELTOS DE PROBABILIDAD D A B y B 1. Sean A y B subconjuntos del conjunto U y sea C A B E A. a) Dibuje diagramas de Venn separados para representar los conjuntos C, D y E. b) Utilizando las

Más detalles

CONOCIENDO EL USO DE LAS PROBABILIDADES

CONOCIENDO EL USO DE LAS PROBABILIDADES MANUAL DE CORRECCIÓN DE LOS PROBLEMAS DE LA FICHA 20 Indicadores de evaluación: Plantea y resuelve problemas sobre la probabilidad de un evento en una situación aleatoria a partir de un modelo referido

Más detalles

Son los experimentos de los que podemos predecir el resultado antes de que se realicen.

Son los experimentos de los que podemos predecir el resultado antes de que se realicen. Probabilidad Experimentos deterministas Son los experimentos de los que podemos predecir el resultado antes de que se realicen. Ejemplo Si dejamos caer una piedra desde una ventana sabemos, sin lugar a

Más detalles

12 ESTADÍSTICA Y PROBABILIDAD

12 ESTADÍSTICA Y PROBABILIDAD 12 ESTADÍSTICA Y PROBABILIDAD 12.1.- TABLAS DE FRECUENCIA ABSOLUTA Y RELATIVA. PARÁMETROS ESTADÍSTICOS. 12.2.- GRÁFICOS ESTADÍSTICOS 12.3.- CÁLCULO DE PROBABILIDADES. REGLA DE LAPLACE. 12.1.- TABLAS DE

Más detalles

TEMA 10: DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL.

TEMA 10: DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL. TEMA 10: DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL. 10.1 Experimentos aleatorios. Sucesos. 10.2 Frecuencias relativas y probabilidad. Definición axiomática. 10.3 Distribuciones de

Más detalles

Apuntes de Probabilidad para 2º E.S.O

Apuntes de Probabilidad para 2º E.S.O Apuntes de Probabilidad para 2º E.S.O 1. Experimentos aleatorios Existen fenómenos donde la concurrencia de unas circunstancias fijas no permite anticipar cuál será el efecto producido. Por ejemplo, si

Más detalles

Cálculo de probabilidad. Tema 1: Combinatoria y probabilidad

Cálculo de probabilidad. Tema 1: Combinatoria y probabilidad Cálculo de probabilidad Tema 1: Combinatoria y probabilidad Guión Guión 1.1. Análisis combinatorio Regla de multiplicación Este es el método de conteo más sencillo que existe. Supongamos que realizamos

Más detalles

HOJA 32: EJERCICIOS DE REPASO DE PROBABILIDAD

HOJA 32: EJERCICIOS DE REPASO DE PROBABILIDAD pág.45 HOJA 32: EJERCICIOS DE REPASO DE PROBABILIDAD 1.- De una baraja española de 40 cartas se extrae una al azar, cuál es la probabilidad de que sea bastos o menor que 5? 2.- Dos jugadores (A y B) inician

Más detalles

Práctica en el Tratamiento de la información

Práctica en el Tratamiento de la información Práctica en el Tratamiento de la información A) Extracción de canicas. (1) Pablo y María introdujeron dos canicas en una bolsa, de las cuales una era roja y otra verde. Después de remover las canicas,

Más detalles