Probabilidad. Literature de ficción para níños. Literature de no ficción para níños. Literature de ficción para adultos. Otras


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Probabilidad. Literature de ficción para níños. Literature de no ficción para níños. Literature de ficción para adultos. Otras"

Transcripción

1 C APÍTULO 0 Probabilidad Resumen del contenido El Capítulo 0 presenta unos conceptos básicos de probabilidad, incluyendo clases especiales de eventos, valores esperados y permutaciones y combinaciones de conteo. Gráficas de frecuencia relativa y probabilidad El Capítulo 0 presenta las gráficas de frecuencia relativa, las cuales muestran datos categóricos. Los diagramas de barras y de círculos de frecuencia relativa muestran el por ciento o la fracción de cada categoría relativa al total para todas las categorías. Medios de comunicación Colección de la biblioteca 6% 3% 8% Otras Literature de ficción para níños Literature de no ficción para adultos 35% 4% Air emissions (69%) 4% Literature de no ficción para níños Literature de ficción para adultos Colección de la biblioteca 30 Por ciento Literature de ficción para níños Literature de no ficción para níños Literature de ficción para adultos Literature de no ficción para adultos Categoría Medios de comunicación La posibilidad de que algo ocurra, o la probabilidad de un resultado, puede determinarse de una gráfica de probabilidad relativa. Por ejemplo, para un artículo escogido al azar de la colección de la biblioteca, la probabilidad que ese artículo sea de literatura de ficción para adultos es 4% ó 0.4. Una probabilidad experimental o probabilidad observada está basada en datos o experimentos y se define como número de ocurrencias del evento.unaprobabilidad teórica, definida como número total de intentos número de diferentes maneras que un evento puede ocurrir Otras, usa cantidades conocidas. Para una número total de resultados posibles igualmente probables moneda imparcial, la probabilidad teórica de obtener cara es 50%, porque las caras son igualmente probables que las cruces. Sin embargo, al lanzar una moneda, una persona puede obtener una corrida de caras o cruces que los puede llevar a una probabilidad experimental diferente para caras. Luego de muchos lanzamientos de la moneda, la probabilidad experimental para las caras se acercaría al 50%. (continued) 00 Key Curriculum Press Discovering Algebra: Una guía para padres 4

2 Capítulo 0 Probabilidad (continuado) Eventos independientes Si usted lanza una moneda repetidamente y obtiene caras 5 veces corridas, podría decir que la posibilidad, o probabilidad, de obtener cara en el próximo lanzamiento es muy pequeña. Después de todo, la posibilidad de obtener 6 caras corridas es muy pequeña. O, usted puede pensar que la posibilidad de obtener cara en el próximo lanzamiento es grande; hay una corrida de caras. De hecho, sin embargo, la moneda no tiene memoria; la posibilidad de obtener cara en el próximo lanzamiento es 0.5, al igual que lo ha sido todo el tiempo. Se podría decir que los eventos son independientes; el resultado del sexto lanzamiento no depende del resultado del quinto lanzamiento. En el caso de eventos independientes, la probabilidad de que ambos ocurran es el producto de las probabilidades de los eventos individuales. La probabilidad de obtener caras cinco veces corridas es 3. Esto también es la probabilidad de obtener cualquier serie de caras o cruces. En otras palabras, la probabilidad de obtener Cr Cr Ca Cr Cr también es 3. No todos los eventos son independientes de los eventos anteriores. Suponga que usted tiene una bolsa con seis billetes, cinco billetes de dólar y un billete de 00 dólares. La probabilidad de seleccionar el billete de 00 dólares es en 6, o alrededor de 0.. Sin embargo, si alguien selecciona un billete de dólar y lo remueve la bolsa, la próxima persona tiene una probabilidad de en 5, ó 0., de escoger el billete de 00 dólares. Por supuesto, si la primera persona selecciona el billete de 00 dólares, entonces la próxima persona no tiene ninguna posibilidad, o una probabilidad de 0, de escoger el billete de 00 dólares. Permutaciones y combinaciones El determinar números para calcular probabilidades teóricas puede ser desafiante. A veces, los resultados a contarse son arreglos de cosas o de personas. Por ejemplo, suponga que diez personas asisten a una reunión, y usted escoge al azar tres de ellas para ganarse diferentes premios de entrada. Cualquiera de los diez podría recibir el premio de entrada A, el más valioso. Cualquiera de los que quedan podría ganarse el premio de entrada B, el próximo más valioso. Y cualquiera de los ocho restantes podría ganarse el tercer premio de entrada, C. Hay maneras que tres de las diez personas podrían arreglarse para obtener estos premios de entrada. Los arreglos se llaman permutaciones; el número de permutaciones de diez personas, tres a la vez, se abrevia 0 P 3. Si los premios de entrada fueran todos iguales, no importaría quién se llevara cuál premio. Todo lo que importa es el número de tríos de personas que ganan. Estas colecciones se llaman combinaciones. Las seis permutaciones ABC, ACB, BAC, BCA, CAB y CBA contarían como una combinación, porque A, B y C son er Lanzamiento el mismo premio. El número de combinaciones de tres personas de diez, escrito 0 C 3, es sólo 6 de 0 P 3,ó 0. Experimentos de múltiples etapas Los diagramas de árbol pueden ser útiles para determinar probabilidades de experimentos más complicados. Para dos lanzamientos de una moneda, los resultados posibles y sus probabilidades pueden mostrarse en un diagrama de árbol. P(H) = P(T) = P(H) = P(T) = P(H) = P(T) = do Lanzamiento P(H y H) = 4 P(H y T) = 4 P(T y H) = 4 P(T y T) = 4 (continued) 48 Discovering Algebra: Una guía para padres 00 Key Curriculum Press

3 Capítulo 0 Probabilidad (continuado) El valor esperado de un evento es el valor promedio hallado al multiplicar el valor de cada evento posible por su probabilidad y sumar los productos. Por ejemplo, el valor esperado en la aguja giratoria mostrada se hallaría como se muestra a continuación: (5) 4 () (6) El valor esperado de la aguja giratoria es $0.50. Problema de resumen Imagínate que tienes una bolsa con bloques de colores, tres azules y cuatro rojos. Qué clases de preguntas pueden hacerse y responderse acerca del escoger bloques de la bolsa? Preguntas que podría hacer, en su papel de estudiante para su estudiante, incluyen: Cuál es la probabilidad de sacar un bloque rojo? Un bloque azul? Cuál es la probabilidad de sacar dos bloques rojos corridos? Necesitas más información? Si los bloques rojos valen $ y los bloques azules valen $5, cuál es el valor esperado de un sorteo? Qué valores para cada bloque de color darían un valor esperado de $ para un sorteo? Trata de hallar varias posibilidades. Respuestas ejemplares La probabilidad de sacar un bloque rojo es 4 ;la probabilidad de sacar un bloque azul es 3.Para hallar la probabilidad de sacar dos bloques rojos corridos, necesitas saber si el bloque se repondrá después de sacarlo. La probabilidad de sacar dos bloques rojos reemplazándolos es , 9 mientras que la probabilidad de sacar dos bloques rojos sin reemplazarlos es ,ó.Si los bloques rojos valen $ y los bloques azules valen $5, el valor esperado de un sorteo es 4 () 3 (5) , ó $3.4. Para tener un valor esperado de $ por sorteo, hay muchas posibles combinaciones. Algunas son $3.50 por los rojos, $0 por los azules; $.5 por los rojos, $.00 por los azules; $.50 por los rojos, $8.00 por los azules. $5 $ $6 00 Key Curriculum Press Discovering Algebra: Una guía para padres 49

4

5 Capítulo 0 Ejercicios de repaso Nombre Periodo Fecha. (Lecciones 0., 0.) Sharon compró una bolsa de globos de colores para una fiesta. La bolsa tenía 9 globos blancos, 39 azules, 4 rosados, verdes y 5 amarillos. a. Determina el porcentaje de cada color de globo y usa esa información para hacer un diagrama de círculo y un diagrama de barras de frecuencia relativa. b. Qué porcentaje de globos no son rosados ni blancos? c. Si Sharon busca dentro de la bolsa y saca un globo al azar, cuál es la probabilidad de que será verde?. (Lección 0.3) Considera la figura a la derecha. a. Si se coloca un punto al azar en el rectángulo grande, cuál es la probabilidad teórica de que éste caiga dentro de la región sombreada? b. Supón que colocas muchos puntos al azar, y 40 de ellos caen en la región sombreada. Estima el total de puntos colocados. 3. (Lección 0.4) Una escuela superior llevará a cabo una lotería en la cual se escogen tres dígitos diferentes entre los dígitos 09 para crear el número ganador. Para ganar, debes adivinar correctamente el número ganador. a. Supón que el número ganador adivinado debe tener los mismos tres dígitos, en el mismo orden, que el número ganador. Cuántos números de tres dígitos pueden hacerse de los dígitos 0 al 9, donde ningún dígito se usa dos veces? Cuál es la probabilidad de ganar en este caso? b. Ahora supón que el número ganador adivinado debe tener los mismos tres dígitos que el número ganador, pero los dígitos pueden estar en cualquier orden. Cuál es la probabilidad de ganar en este caso? 4. (Lecciones 0.5, 0.6) Brigham tiene una bolsa que contiene siete fichas numeradas. Hay cinco fichas rotuladas con el número y dos fichas con el número 4. Él busca en la bolsa y saca una ficha, pone la ficha a un lado y luego saca otra ficha de la bolsa. a. Qué es P? Qué es P4 4? b. Crea un diagrama de árbol para calcular las probabilidades de los diferentes resultados de los experimentos de los dos sorteos de Brigham. c. Qué es P4 y? d. Los números que Brigham saca pueden sumar 8, ó 4. Cuál es la probabilidad que la suma sea un número par? e. Halla el valor esperado de la suma. 00 Key Curriculum Press Discovering Algebra: Una guía para padres 5

6 SOLUCIONES A LOS EJERCICIOS DE REPASO DEL CAPÍTULO 0. a. Hay 50 globos en total. Halla el porcentaje de cada color dividiendo el número de ese color por 50. Por ejemplo, nú mero de verdes número total , así que 4% de los globos son verdes. Multiplica el porcentaje por 360 para hallar la medida del ángulo de cada sector. Por ejemplo, , así que el ángulo del sector que representa el número relativo de globos verdes es Gráficas ejemplares se muestran abajo. Blanco Porcentaje Azul 6% Blanco Rosado 6% Verde 4% 6% Azul b. Los globos rosados y blancos juntos forman 6% 6% % del total, así que el porcentaje de globos que no son rosados ni blancos es 00% % 8%. c. 4% de los globos son verdes, así que la probabilidad de que ella saque uno verde es 4%, ó a. El área sombreada es cuadrados, y el área del rectángulo completo es 8 4 cuadrados. Por lo tanto, la probabilidad de que un punto trazado al azar caiga en la región sombreada es,ó b. Resuelve la proporción cuadrados sombreados cuadrados totales Amarillo 38% Rosado Color Verde Amarillo 40 puntos en el área sombreada x puntos totales. 4 Invierte la proporción. x Multiplica ambos lados por 40. x 3.3 Multiplica. Aproximadamente 3 puntos fueron trazados. 3. a. Hay 0 opciones para el primer dígito, 9 opciones para el segundo y 8 opciones para el tercero así que el número total de números de tres dígitos formados del 0 al 9 sin repetición es También puedes calcular 0 P 3. La probabilidad de adivinar el número ganador es b. Para cada número de tres dígitos hay 3 6 maneras de arreglar los dígitos. Debido a que el orden de los dígitos no importa, divide el número de permutaciones que hallaste en 3a por 6, para obtener También puedes calcular 0 C 3. La probabilidad de adivinar el número ganador es a. P significa la probabilidad que Brigham saque un en su segundo sorteo, dado que sacó un en su primer sorteo. Si Brigham sacó un en el primer sorteo, entonces quedarían cuatro y dos 4 en la bolsa, para un total de 6 fichas. Por lo tanto, P 4 6,ó.Si 3 Brigham sacó un 4 en el primer sorteo, entonces quedarían cinco y un 4 en la bolsa para su segundo sorteo, así que P b. La primera rama de este diagrama de árbol indica las probabilidades de los resultados posibles del primer sorteo de Brigham, y la segunda rama muestra las probabilidades de su segundo sorteo. er Sorteo P( 5_ ) = P(4 ) = _ do Sorteo P( ) = _ 3 P(4 ) = 3 P( 4 ) = 5_ 6 P(4 4 ) = 6 P( y ) = P( y 4 ) = 5 P(4 y ) = c. Multiplica las probabilidades a lo largo de los ramales que llevan al resultado 4 y. P4 y ,ó. d. Suma las probabilidades de los resultados que dan sumas pares. P(suma es par) P y P4 y 4 0. e. Para cada resultado, multiplica la suma de los números por la probabilidad del resultado, y luego halla la suma de los resultados. Valor esperado P y 4 P y 4 P y 4 P4 y P(4 y 4 ) = El valor esperado de la suma de los dos sorteos de Brigham es de 8 6,o aproximadamente.3. 5 Discovering Algebra: Una guía para padres 00 Key Curriculum Press

Probabilidad. INTER-CAMMC Matemática 4-6. Profa. Liza V. Rodríguez

Probabilidad. INTER-CAMMC Matemática 4-6. Profa. Liza V. Rodríguez Probabilidad INTER-CAMMC Matemática 4-6 Objetivos: Definir los conceptos probabilidad, probabilidad teórica y probabilidad experimental. Presentar ejemplos de cada concepto discutido. Vocabulario Experimento:

Más detalles

Probabilidad teórica (páginas )

Probabilidad teórica (páginas ) A NOMRE FECHA PERÍODO Probabilidad teórica (páginas 8 ) La probabilidad teórica es la razón del número de maneras en que un evento puede ocurrir al número de resultados posibles. Calcula la probabilidad

Más detalles

CAPÍTULO 1: INTRODUCCIÓN Y PROBABILIDAD

CAPÍTULO 1: INTRODUCCIÓN Y PROBABILIDAD CAPÍTULO 1: INTRODUCCIÓN Y PROBABILIDAD Fecha: Lección: Título del Registro de aprendizaje: 2 2014 CPM Educational Program. All rights reserved. Core Connections en español, Curso 2 Capítulo 1: Introducción

Más detalles

mientras que la regla de multiplicación se utiliza

mientras que la regla de multiplicación se utiliza Materia: Matemática de Séptimo Tema: Diagrama de Árbol Supongamos que lanzas una moneda 3 veces seguidas Cómo se pueden ilustrar todos los posibles resultados? Cuál es la probabilidad de que la moneda

Más detalles

FICHA 20: Conociendo el uso de las probabilidades

FICHA 20: Conociendo el uso de las probabilidades FICHA 20: Conociendo el uso de las probabilidades A fines del año 2014, Osiptel publicó un informe sobre el estado actual de participación de las operadores móviles en el Perú, a causa de la aparición

Más detalles

A) Solo I B) Solo II C) Solo III D) Solo I y III E) Solo II y III

A) Solo I B) Solo II C) Solo III D) Solo I y III E) Solo II y III GUIA DOS P.S.U. PROBABILIDADES ) La probabilidad de extraer una bola roja de una caja es. Cuál es la probabilidad de sacar una bola que no sea roja? Falta Información ) Se lanzan dos dados de distinto

Más detalles

Fracciones y fractales

Fracciones y fractales C APÍTULO 0 Fracciones y fractales Resumen del contenido El tema del Capítulo 0 es la investigación de patrones en el diseño fractal. No se intimide si no ha visto fractales anteriormente. El propósito

Más detalles

Definiendo y expresando probabilidad

Definiendo y expresando probabilidad Bitácora del Estudiante Definiendo y expresando probabilidad Realiza las siguientes actividades, mientras trabajas con el tutorial. 1. Cuando se seleccionan los jugadores, todo el mundo tiene la oportunidad

Más detalles

GUÍA NÚMERO 20 PROBABILIDADES:

GUÍA NÚMERO 20 PROBABILIDADES: aint Gaspar ollege MIIONERO DE LA PREIOA ANGRE Formando Personas Íntegras Departamento de Matemática REUMEN PU MATEMATIA GUÍA NÚMERO 0 PROBABILIDADE: A. PROBABILIDAD LAIA: uando la ocurrencia de un suceso

Más detalles

PROBABILIDAD SIMPLE 1.1.2,

PROBABILIDAD SIMPLE 1.1.2, PROBABILIDAD SIMPLE..2,.2..2.3 Resultado: Cualquier resultado posible o real de la acción considerada, como sacar un en un cubo numverado estándar o salir cruz al arrojar una moneda. Evento: Un resultado

Más detalles

Capítulo. Técnicas de conteo Pearson Prentice Hall. All rights reserved

Capítulo. Técnicas de conteo Pearson Prentice Hall. All rights reserved Capítulo 35 Técnicas de conteo La regla de multiplicación y conteo Si una tarea consiste de una secuencia de opciones en las cuales hay p posibilidades para la primera opción, q posibilidades para la segunda

Más detalles

SESIÓN 10 REGLAS BÁSICAS PARA COMBINAR PROBABILIDADES

SESIÓN 10 REGLAS BÁSICAS PARA COMBINAR PROBABILIDADES SESIÓN 10 REGLAS BÁSICAS PARA COMBINAR PROBABILIDADES I. CONTENIDOS: 1. Reglas básicas para combinar probabilidades.. Diagramas de Venn. II. OBJETIVOS: Al término de la Sesión, el alumno: Distinguirá e

Más detalles

Introducción. 1. De acuerdo con lo visto en la animación de la introducción La probabilidad del súper clásico, contesta las siguientes preguntas.

Introducción. 1. De acuerdo con lo visto en la animación de la introducción La probabilidad del súper clásico, contesta las siguientes preguntas. RECOLECTO, ANALIZO MI DATOS Y OBTENGO MIS PROPIAS CONCLUSIONES Resolución de situaciones aleatorias mediante la regla de Laplace Introducción 1. De acuerdo con lo visto en la animación de la introducción

Más detalles

PROBABILIDAD CLÁSICA (Técnicas de Conteo)

PROBABILIDAD CLÁSICA (Técnicas de Conteo) PROBABILIDAD CLÁSICA (Técnicas de Conteo) M. en C. Juan Carlos Gutiérrez Matus INSTITUTO POLITÉCNICO NACIONAL Unidad Profesional Interdisciplinaria de Ingeniería y Ciencias Sociales y Administrativas Primavera

Más detalles

a) la primera de las monedas es cara. b) por lo menos una de las monedas es cara.

a) la primera de las monedas es cara. b) por lo menos una de las monedas es cara. Estadística II Ejercicios Instrucciones: Resolver los siguientes problemas. Entregar un trabajo por grupo el día del primer parcial, el trabajo deberá tener carátula con los nombres de los integrantes

Más detalles

10 9 Sacamos una bola y anotamos el número. a) Es una experiencia aleatoria? b) Escribe el espacio muestral y seis sucesos.

10 9 Sacamos una bola y anotamos el número. a) Es una experiencia aleatoria? b) Escribe el espacio muestral y seis sucesos. 13 Soluciones a las actividades de cada epígrafe PÁGINA 132 1 En una urna hay 10 bolas de cuatro colores. Sacamos una bola y anotamos su color. a) Es una experiencia aleatoria? b) Escribe el espacio muestral

Más detalles

Tipos de Probabilidades

Tipos de Probabilidades Pre-universitario Manuel Guerrero Ceballos Clase N 03 MODULO COMPLEMENTARIO Tipos de Probabilidades Resumen de la clase anterior Probabilidad Combinatoria Probabilidades Con y sin repetición Regla de Laplace

Más detalles

Guía de actividades. PROBABILIDAD Profesor Fernando Viso

Guía de actividades. PROBABILIDAD Profesor Fernando Viso Guía de actividades PROBABILIDAD Profesor Fernando Viso GUIA DE TRABAJO Materia: Matemáticas Guía #4. Tema: Probabilidades. Fecha: Profesor: Fernando Viso Nombre del alumno: Sección del alumno: CONDICIONES:

Más detalles

Chapter Audio Summary for McDougal Littell Pre-Algebra

Chapter Audio Summary for McDougal Littell Pre-Algebra Chapter Audio Summary for McDougal Littell Pre-Algebra Chapter 11 Data Analysis and Probability En el capítulo 11 aprendiste que las tablas arborescentes se pueden usar para representar datos siguiendo

Más detalles

CAPÍTULO 2: SUMA DE FRACCIONES Y ENTEROS

CAPÍTULO 2: SUMA DE FRACCIONES Y ENTEROS CAPÍTULO 2: SUMA DE FRACCIONES Y ENTEROS Fecha: Lección: Título del Registro de aprendizaje: 12 2014 CPM Educational Program. All rights reserved. Core Connections en español, Curso 2 Capítulo 2: Suma

Más detalles

Matemáticas Discretas Enrique Muñoz de Cote INAOE. Permutaciones y Combinaciones

Matemáticas Discretas Enrique Muñoz de Cote INAOE. Permutaciones y Combinaciones Matemáticas Discretas Enrique Muñoz de Cote INAOE Permutaciones y Combinaciones Contenido Introducción Reglas de la suma y el producto Permutaciones Combinaciones Generación de permutaciones Teorema del

Más detalles

Teoría de probabilidades (espacio muestral simple)

Teoría de probabilidades (espacio muestral simple) Teoría de probabilidades (espacio muestral simple) Muchos experimentos muestran cierta regularidad, i.e., la frecuencia de un evento es aproximadametente la misma en una serie de intentos Un espacio muestral

Más detalles

Experimento determinista. Experimento aleatorio. Espacio muestral. Suceso elemental. Suceso seguro. Suceso imposible.

Experimento determinista. Experimento aleatorio. Espacio muestral. Suceso elemental. Suceso seguro. Suceso imposible. 86464 _ 04-047.qxd //07 09:4 Página 4 Probabilidad INTRODUCCIÓN El estudio matemático de la probabilidad surge históricamente vinculado a los juegos de azar. Actualmente la probabilidad se utiliza en muchas

Más detalles

CONOCIENDO EL USO DE LAS PROBABILIDADES

CONOCIENDO EL USO DE LAS PROBABILIDADES MANUAL DE CORRECCIÓN DE LOS PROBLEMAS DE LA FICHA 20 Indicadores de evaluación: Plantea y resuelve problemas sobre la probabilidad de un evento en una situación aleatoria a partir de un modelo referido

Más detalles

También son experimentos aleatorios: lanzar una moneda, sacar una bola de una bolsa, sacar una carta de la baraja, etc.

También son experimentos aleatorios: lanzar una moneda, sacar una bola de una bolsa, sacar una carta de la baraja, etc. 3º ESO E UNIDAD 16.- SUCESOS ALEATORIOS. PROBABILIDAD PROFESOR: RAFAEL NÚÑEZ -------------------------------------------------------------------------------------------------------------------------------------

Más detalles

open green road Guía Matemática DIAGRAMA DE ÁRBOL tutora: Jacky Moreno .co

open green road Guía Matemática DIAGRAMA DE ÁRBOL tutora: Jacky Moreno .co Guía Matemática DIAGRAMA DE ÁRBOL tutora: Jacky Moreno.co 1. Diagrama de árbol El diagrama de árbol es una herramienta gráfica que nos permite representar todos los posibles resultados de un experimento

Más detalles

Recuerda lo fundamental

Recuerda lo fundamental 11 Combinatoria Recuerda lo fundamental Curso:... Fecha:... COMBINATORIA VARIACIONES CON REPETICIÓN Son las agrupaciones ordenadas de n elementos que se pueden formar a partir de m elementos distintos.

Más detalles

Curs MAT CFGS-17

Curs MAT CFGS-17 Curs 2015-16 MAT CFGS-17 Sigue la PROBABILIDAD Resumen de Probabilidad Teoría de probabilidades: La teoría de probabilidades se ocupa de asignar un cierto número a cada posible resultado que pueda ocurrir

Más detalles

UNIDAD DIDÁCTICA 14: Nociones elementales de probabilidad

UNIDAD DIDÁCTICA 14: Nociones elementales de probabilidad accés a la universitat dels majors de 25 anys acceso a la universidad de los mayores de 25 años UNIDAD DIDÁCTICA 14: Nociones elementales de probabilidad ÍNDICE: CONTENIDOS 1 Sucesos equiprobables 2 La

Más detalles

PRACTICA CON PROBLEMAS DE PROBABILIDAD

PRACTICA CON PROBLEMAS DE PROBABILIDAD Probabilidad PRACTICA CON PROBLEMAS DE PROBABILIDAD Copyright 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. 4.1-1 EJEMPLO 1 Cuál regla aplica? En el juego De Acuerdo o No?, le presentan

Más detalles

Un juego de azar consiste en escoger 3 números distintos del 1 al 7. De cuántas formas se puede realizar esta selección?

Un juego de azar consiste en escoger 3 números distintos del 1 al 7. De cuántas formas se puede realizar esta selección? . Un juego de azar consiste en escoger números distintos del al 7. De cuántas formas se puede realizar esta selección?. 7 0 4 840 De cuántas maneras distintas se pueden ordenar personas en un círculo?.

Más detalles

Técnicas de conteo. Permutaciones y combinaciones. Álvaro José Flórez. Febrero - Junio Facultad de Ingenierías

Técnicas de conteo. Permutaciones y combinaciones. Álvaro José Flórez. Febrero - Junio Facultad de Ingenierías Técnicas de conteo Permutaciones y combinaciones Álvaro José Flórez 1 Escuela de Ingeniería Industrial y Estadística Facultad de Ingenierías Febrero - Junio 2012 Técnicas de conteo En el enfoque clásico,

Más detalles

Conceptos. Experimento Aleatorio: Es un fenómeno en el que interviene el azar, es decir no se puede predecir el resultado.

Conceptos. Experimento Aleatorio: Es un fenómeno en el que interviene el azar, es decir no se puede predecir el resultado. Teresa Pérez P DíazD Profesora de matemática tica Conceptos Experimento Aleatorio: Es un fenómeno en el que interviene el azar, es decir no se puede predecir el resultado. Ejemplos: E : Lanzar un dado,

Más detalles

Ejercicios elementales de Probabilidad

Ejercicios elementales de Probabilidad Ejercicios elementales de Probabilidad 1. Se extrae una carta de una baraja de 52 naipes. Halla la probabilidad de que sea: (a) Un rey. (b) Una carta roja. (c) El 7 de tréboles. (d) Una figura de diamantes.

Más detalles

Unidad Temática 2 Probabilidad

Unidad Temática 2 Probabilidad Unidad Temática 2 Probabilidad Responda verdadero o falso. Coloque una letra V a la izquierda del número del ítem si acepta la afirmación enunciada, o una F si la rechaza. 1. El experimento que consiste

Más detalles

DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL

DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL Página 4 REFLEXIONA Y RESUELVE Recorrido de un perdigón Dibuja los recorridos correspondientes a: C + C C, + C + C, + C C C, + + + +, C+CC

Más detalles

Calcular probabilidad clásica mediante regla de Laplace. Reconocer elementos básicos en las probabilidades.

Calcular probabilidad clásica mediante regla de Laplace. Reconocer elementos básicos en las probabilidades. Guía N 16 Nombre: Fecha: Contenidos: Probabilidad Clásica Objetivos: Calcular probabilidad clásica mediante regla de Laplace. Reconocer elementos básicos en las probabilidades. NOCIONES ELEMENTALES Experimento:

Más detalles

Factorial de un número Se define como la multiplicación sucesiva de los primeros números naturales.

Factorial de un número Se define como la multiplicación sucesiva de los primeros números naturales. Combinatoria Principio multiplicativo Un elemento se puede elegir de formas diferentes, un elemento se puede elegir de formas diferentes hasta un elemento enésimo que puede ser elegido de formas diferentes.

Más detalles

2. Encuentra el espacio muestral del experimento lanzar dos monedas. Si se define el suceso A = al menos una sea cara, de cuántos sucesos elementales

2. Encuentra el espacio muestral del experimento lanzar dos monedas. Si se define el suceso A = al menos una sea cara, de cuántos sucesos elementales 2. Encuentra el espacio muestral del experimento lanzar dos monedas. Si se define el suceso A = al menos una sea cara, de cuántos sucesos elementales consta A? Cuál es el suceso contrario de A? 3. Si consideramos

Más detalles

Plan de clase (1/4) b) Cuál es la probabilidad de que en ambas caras aparezca el mismo número?

Plan de clase (1/4) b) Cuál es la probabilidad de que en ambas caras aparezca el mismo número? Plan de clase (1/4) Escuela: Fecha: Profr. (a): Curso: Matemáticas 9 Eje temático: MI Contenido. 9.3.7 Cálculo de la probabilidad de ocurrencia de dos eventos independientes (regla del producto). Intenciones

Más detalles

Christian Michel Álvarez Ramírez

Christian Michel Álvarez Ramírez Christian Michel Álvarez Ramírez En esta presentación hablaremos sobre el tema de probabilidad y estadística, veremos en que nos puede servir, como podemos aplicarla, ya sea en la vida diaria o en el trabajo

Más detalles

UNIDAD 4: ESTUDIEMOS LA PROBABILIDAD. 7. Probabilidad 1

UNIDAD 4: ESTUDIEMOS LA PROBABILIDAD. 7. Probabilidad 1 UNIDAD 4: ESTUDIEMOS LA PROBABILIDAD. 7. Probabilidad 1 Objetivos conceptuales. Comprender lo que es probabilidad. Objetivos procedimentales. Efectuar cálculos de probabilidad. Objetivos actitudinales.

Más detalles

PROBLEMAS DE PROBABILIDAD. 3. Calcula la probabilidad de que al lanzar dos dados la suma de sus puntos sea: a) igual a 5 b) mayor que 10

PROBLEMAS DE PROBABILIDAD. 3. Calcula la probabilidad de que al lanzar dos dados la suma de sus puntos sea: a) igual a 5 b) mayor que 10 1. Se lanza un dado. Halla la probabilidad: a) de salir el 3 b) de salir un número par c) de salir un número mayor que 2 PROBLEMAS DE PROBABILIDAD 2. Calcula la probabilidad de que al lanzar dos monedas:

Más detalles

Colegio SSCC Concepción - Depto. de Matemáticas. Aprendizajes Esperados: Calcular probabilidades condicionales en situaciones problemáticas

Colegio SSCC Concepción - Depto. de Matemáticas. Aprendizajes Esperados: Calcular probabilidades condicionales en situaciones problemáticas Colegio SSCC Concepción - Depto. de Matemáticas Unidad de Aprendizaje: PROBABILIDAD Capacidades/Destreza/Habilidad: Racionamiento Matemático/ Aplicación / Calcular, Resolver Valores/ Actitudes: Respeto,

Más detalles

Diagramas de frecuencias relativas

Diagramas de frecuencias relativas LEIÓN ONENSAA 10.1 iagramas de frecuencias relativas En esta lección crearás diagramas de círculo calcularás frecuencias relativas crearás diagramas de barras de frecuencias relativas y diagramas de círculo

Más detalles

Listo para seguir? Intervención de destrezas Introducción a la probabilidad

Listo para seguir? Intervención de destrezas Introducción a la probabilidad 12-1 Listo para seguir? Intervención de destrezas Introducción a la probabilidad La probabilidad es la medida de qué tan posible es que ocurra un suceso. Estimar la probabilidad de un suceso Escribe imposible,

Más detalles

MATEMÁTICAS PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES 25 AÑOS. UNIDAD DIDÁCTICA 13: Nociones elementales de probabilidad

MATEMÁTICAS PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES 25 AÑOS. UNIDAD DIDÁCTICA 13: Nociones elementales de probabilidad UNIDAD DIDÁCTICA 3: Nociones elementales de probabilidad. ÍNDICE. ÍNDICE 2. INTRODUCCIÓN GENERAL A LA UNIDAD Y ORIENTACIONES PARA EL ESTUDIO 3. OBJETIVOS ESPECÍFICOS 4. CONTENIDOS Sucesos equiprobables

Más detalles

Problemas para entrenamiento (abril 2013)

Problemas para entrenamiento (abril 2013) Problemas para entrenamiento (abril 2013) 1 En el cálculo 1 2 3 4 5 se puede remplazar por + o por ¾Cuál de los siguientes números no se puede obtener? (a) 1 (b) 3 (c) 7 (d) 13 (e) 17 2 Hay 5 cartas numeradas

Más detalles

Materia: Matemática de Octavo Tema: Sucesos. Marco teórico

Materia: Matemática de Octavo Tema: Sucesos. Marco teórico Materia: Matemática de Octavo Tema: Sucesos En esta lección aprenderás términos básicos de la estadística y algunas reglas de la probabilidad. También aprenderás cómo enumerar eventos simples y muestras

Más detalles

ESTRATEGIAS PROPUESTAS PARA LA RESOLUCIÒN DEL PRACTIQUEMOS DE LA FICHA N 20

ESTRATEGIAS PROPUESTAS PARA LA RESOLUCIÒN DEL PRACTIQUEMOS DE LA FICHA N 20 ESTRATEGIAS PROPUESTAS PARA LA RESOLUCIÒN DEL PRACTIQUEMOS DE LA FICHA N 20 matemáticamente en situaciones de gestión de datos e Matematiza situaciones Plantea y resuelve problemas sobre la probabilidad

Más detalles

TEMA 10: DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL.

TEMA 10: DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL. TEMA 10: DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL. 10.1 Experimentos aleatorios. Sucesos. 10.2 Frecuencias relativas y probabilidad. Definición axiomática. 10.3 Distribuciones de

Más detalles

Práctica en el Tratamiento de la información

Práctica en el Tratamiento de la información Práctica en el Tratamiento de la información A) Extracción de canicas. (1) Pablo y María introdujeron dos canicas en una bolsa, de las cuales una era roja y otra verde. Después de remover las canicas,

Más detalles

Cuarto Año. Área: Estadística y Probabilidad

Cuarto Año. Área: Estadística y Probabilidad Cuarto Año Área: Estadística y Probabilidad Descripción Habilidades Generales (pág. 247, segundo ciclo, Estadística y Probabilidad) Identificar eventos más probables, menos probables o igualmente probables

Más detalles

Probabilidad. a) Determinista. c) Aleatorio. e) Determinista. b) Aleatorio. d) Aleatorio.

Probabilidad. a) Determinista. c) Aleatorio. e) Determinista. b) Aleatorio. d) Aleatorio. Probabilidad 08 Clasifica estos experimentos en aleatorios o deterministas. a) Lanzar una piedra al aire y verificar si cae al suelo o no. b) Hacer una quiniela y comprobar los resultados. c) Predecir

Más detalles

Guía Matemática NM 4: Probabilidades

Guía Matemática NM 4: Probabilidades Centro Educacional San Carlos de Aragón. Dpto. Matemática. Prof.: Ximena Gallegos H. Guía Matemática NM : Probabilidades Nombre: Curso: Aprendizaje Esperado: Determinar la probabilidad de ocurrencia de

Más detalles

Capítulo 4 Probabilidad TÉCNICAS DE CONTEO Copyright 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved.

Capítulo 4 Probabilidad TÉCNICAS DE CONTEO Copyright 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Capítulo 4 Probabilidad TÉCNICAS DE CONTEO Copyright 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. 4.1-1 Técnicas de conteo En muchos problemas de probabilidad, el reto mayor es encontrar

Más detalles

CENTRO DE ESTUDIOS TECNOLÓGICOS Industrial y de Servicios Nº 107. Facilitador: JOSÉ EXIQUIO SÁNCHEZ CECEÑA

CENTRO DE ESTUDIOS TECNOLÓGICOS Industrial y de Servicios Nº 107. Facilitador: JOSÉ EXIQUIO SÁNCHEZ CECEÑA CENTRO DE ESTUDIOS TECNOLÓGICOS Industrial y de Servicios Nº 107 Facilitador: JOSÉ EXIQUIO SÁNCHEZ CECEÑA 10 y 25 de noviembre de 2014 QUÉ ES PROBABILIDAD? Se expresa entre: 0-1, donde 1 = 100% TEORÍA

Más detalles

Desde el lunes 3 de septiembre de 2007, en todo el país, debutaron las nuevas patentes vehiculares únicas:

Desde el lunes 3 de septiembre de 2007, en todo el país, debutaron las nuevas patentes vehiculares únicas: Técnicas de conteo Unidad 6 Desde el lunes 3 de septiembre de 2007, en todo el país, debutaron las nuevas patentes vehiculares únicas: La nueva placa patente única está disponible en todas las oficinas

Más detalles

CANGURO MATEMÁTICO Nivel Estudiante (6to. Curso)

CANGURO MATEMÁTICO Nivel Estudiante (6to. Curso) CANGURO MATEMÁTICO 2003 Nivel Estudiante (6to. Curso) Día 22 de marzo de 2003. Tiempo: hora y 5 minutos No se permite el uso de calculadoras. Hay una única respuesta correcta para cada pregunta. Cada pregunta

Más detalles

Espacio Muestral, se denota con la letra S, y representa el conjunto de todos los sucesos aleatorios. Por ejemplo: Si tiramos una moneda el espacio se sucesos está formado por: S= {Ø, {C}, {X}, {C,X}}.

Más detalles

HERRAMIENTAS DIDÁCTICAS EN EL APRENDIZAJE DE LA ESTADÍSTICA. GRADO 10º. MEDIDAS DE DISPERSIÓN Docente. FERNANDO GONZALEZ ALDANA.

HERRAMIENTAS DIDÁCTICAS EN EL APRENDIZAJE DE LA ESTADÍSTICA. GRADO 10º. MEDIDAS DE DISPERSIÓN Docente. FERNANDO GONZALEZ ALDANA. Lea la guía antes de empezar.! ESTANDAR INSTITUCIÓN EDUCATIVA SANTA TERESA DE JESÚS IBAGUÉ - TOLIMA Proceso: GESTION ACADEMICA PLAN DE ÁREA DE MATEMATICAS Resuelvo y planteo problemas usando conceptos

Más detalles

GUÍA DE EJERCICIOS N 14 PROBABILIDADES

GUÍA DE EJERCICIOS N 14 PROBABILIDADES LICEO CARMELA CARVAJAL DE PRAT PROVIDENCIA DPTO DE MATEMATICA GUÍA DE EJERCICIOS N PROBABILIDADES SECTOR: Matemática PROFESOR(es): Marina Díaz MAIL DE PROFESORES: [email protected] [email protected]

Más detalles

REGLAS DE PROBABILIDAD

REGLAS DE PROBABILIDAD Capítulo 4 Probabilidad REGLAS DE PROBABILIDAD 4.1-1 Evento Compuesto Un evento compuesto es cualquier evento que combina 2 o más eventos simples. Ejemplo: Al lanzar un dado justo de 6 caras, cuál es la

Más detalles

OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Experimento determinista. Experimento aleatorio. Espacio muestral. Suceso elemental.

OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Experimento determinista. Experimento aleatorio. Espacio muestral. Suceso elemental. Probabilidad INTRODUCCIÓN El estudio matemático de la probabilidad surge históricamente vinculado a los juegos de azar. Actualmente la probabilidad se utiliza en muchas disciplinas unidas a la Estadística:

Más detalles

Clase 26. Tema: Experimentos aleatorios. Matemáticas 8 Bimestre: IV Número de clase: 26. Esta clase tiene video. Actividad 70

Clase 26. Tema: Experimentos aleatorios. Matemáticas 8 Bimestre: IV Número de clase: 26. Esta clase tiene video. Actividad 70 Matemáticas 8 Bimestre: IV Número de clase: 26 Clase 26 Esta clase tiene video Tema: Experimentos aleatorios Actividad 70 1 Lea la siguiente información: Un experimento aleatorio es un ensayo o una acción

Más detalles

Capítulo 3: Técnicas de Conteo Clase 2: Permutaciones y Combinaciones, Coeficientes Binomiales y Aplicaciones a Probabilidad Discreta

Capítulo 3: Técnicas de Conteo Clase 2: Permutaciones y Combinaciones, Coeficientes Binomiales y Aplicaciones a Probabilidad Discreta Capítulo 3: Técnicas de Conteo Clase 2: Permutaciones y Combinaciones, Coeficientes Binomiales y Aplicaciones a Probabilidad Discreta Matemática Discreta - CC3101 Profesor: Pablo Barceló P. Barceló Matemática

Más detalles

Probabilidades II. Propiedad Intelectual Cpech

Probabilidades II. Propiedad Intelectual Cpech Probabilidades II Aprendizajes esperados Realizar operaciones entre sucesos (unión, intersección, entre otras). Aplicar la ley de probabilidad total en la resolución de ejercicios. Aplicar la ley de probabilidad

Más detalles

Capítulo 4 Probabilidad TÉCNICAS DE CONTEO Copyright 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved.

Capítulo 4 Probabilidad TÉCNICAS DE CONTEO Copyright 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Capítulo 4 Probabilidad TÉCNICAS DE CONTEO Copyright 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. 4.1-1 Arboles de decisión Un árbol de decisiones es una herramienta para determinar la

Más detalles

REGLAS DE PROBABILIDAD

REGLAS DE PROBABILIDAD Capítulo 4 Probabilidad REGLAS DE PROBABILIDAD 4.1-1 Evento Compuesto Un evento compuesto es cualquier evento que combina 2 o más eventos simples. Ejemplo: Al lanzar un dado justo de 6 caras, cuál es la

Más detalles

EJERCICIOS DE PROBABILIDAD.

EJERCICIOS DE PROBABILIDAD. EJERCICIOS DE PROBABILIDAD. 1. a) Se escoge al azar una letra de la palabra PROBABILIDAD. Indica la probabilidad del suceso A = sea la letra A y del suceso B = sea una consonante. b) Halla la probabilidad

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. Página PRACTICA Sucesos Lanzamos tres veces una moneda y anotamos si sale cara o cruz. a) Escribe el espacio muestral. b) Escribe el suceso A la primera vez salió cara. c) Cuál es el suceso contrario

Más detalles

Series aritméticas. ó La suma de los primeros n términos en una serie se representa por S n. . Por ejemplo: S 6

Series aritméticas. ó La suma de los primeros n términos en una serie se representa por S n. . Por ejemplo: S 6 LECCIÓN CONDENSADA 9.1 Series aritméticas En esta lección aprenderás terminología y notación asociada con series descubrirás una fórmula para la suma parcial de una serie aritmética Una serie es la suma

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. Página PRACTICA Muy probable, poco probable Tenemos muchas bolas de cada uno de los siguientes colores: negro (N), rojo (R), verde (V) y azul (A), y una gran caja vacía. Echamos en la caja R, 0 V

Más detalles

UNIDAD X Teoría de conteo

UNIDAD X Teoría de conteo UNIDAD X Teoría de conteo Regla de la suma UNIDAD 10 TEORÍA DE CONTEO Se les denomina técnicas de conteo a las combinaciones, permutaciones y diagrama de árbol, que nos proporcionan la información de todas

Más detalles

MATEMÁTICAS BÁSICAS PROBABILIDAD

MATEMÁTICAS BÁSICAS PROBABILIDAD MATEMÁTICAS BÁSICAS PROBABILIDAD Autora: Alejandra Sánchez Departamento de Matemáticas Sede Bogotá 10 de diciembre de 2013 Introducción a la Probabilidad Definición espacio muestral y eventos Definición

Más detalles

UNIVERSIDAD DE LA SALLE

UNIVERSIDAD DE LA SALLE UNIVERSIDAD DE LA SALLE Taller Probabilidad Básica. Bioestadística. 1. Determine cuáles de los siguientes experimentos son aleatorios y en caso afirmativo hallar su espacio muestral: (a) Extraer una carta

Más detalles

Para pensar: Cómo se pudo obtener ese

Para pensar: Cómo se pudo obtener ese La teoría de las probabilidades se inició con los juegos de azar en el siglo XVI, pero sin embargo pronto se aplicó a diversos problemas, como las estadísticas de las poblaciones humanas, en las que la

Más detalles

Contando. 1. n factorial: n! = n (n 1) (n 2) ! = 1 por definición

Contando. 1. n factorial: n! = n (n 1) (n 2) ! = 1 por definición Contando 1 Contando 1. n factorial: n! n (n 1) (n 2) 3 2 1. 0! 1 por definición (a) De cuántas formas se puede ordenar 2 objetos, 3 objetos,..., n objetos? (b) Pedro tiene 4 camisas que va a guardar en

Más detalles

02 - Introducción a la teoría de probabilidad. Diego Andrés Alvarez Marín Profesor Asistente Universidad Nacional de Colombia Sede Manizales

02 - Introducción a la teoría de probabilidad. Diego Andrés Alvarez Marín Profesor Asistente Universidad Nacional de Colombia Sede Manizales 02 - Introducción a la teoría de probabilidad Diego Andrés Alvarez Marín Profesor Asistente Universidad Nacional de Colombia Sede Manizales 1 Contenido Repaso de teoría de conjuntos Fenómenos determinísticos

Más detalles

TEMA 17: PROBABILIDAD

TEMA 17: PROBABILIDAD TEMA 17: PROBABILIDAD Probabilidad de un suceso aleatorio es un numero entre 0 y 1 (más cerca del 0, mas difícil que ocurra. Más cerca del 1 más fácil que ocurra). Suceso seguro: Su probabilidad es 1.

Más detalles

EJERCICIOS DE REGULARIZACIÓN 2º SECUNDARIA RX 2º SECUNDARIA 01 MULTIPLICACIÓN Y DIVISIÓN DE NÚMEROS CON SIGNO

EJERCICIOS DE REGULARIZACIÓN 2º SECUNDARIA RX 2º SECUNDARIA 01 MULTIPLICACIÓN Y DIVISIÓN DE NÚMEROS CON SIGNO EJERCICIOS DE REGULARIZACIÓN 2º SECUNDARIA RX 2º SECUNDARIA 01 MULTIPLICACIÓN Y DIVISIÓN DE NÚMEROS CON SIGNO 1. Un caracol se encuentra en el fondo de un pozo que tiene 20 metros de profundidad. Durante

Más detalles

Probabilidad Condicional

Probabilidad Condicional Cómo actualizar la probabilidad de un evento dado que ha sucedido otro? o Cómo cambia la probabilidad de un evento cuando se sabe que otro evento ha ocurrido? Ejemplo: Una persona tiene un billete de lotería

Más detalles

Transformaciones. la cual el libro introduce en este capítulo. Si se traslada la gráfica de y 1 x 2 unidades hacia la derecha y 3 unidades

Transformaciones. la cual el libro introduce en este capítulo. Si se traslada la gráfica de y 1 x 2 unidades hacia la derecha y 3 unidades CAPÍTULO 8 Transformaciones Resumen de contenido En el Capítulo 8, los estudiantes continúan su trabajo con funciones, especialmente funciones no lineales a través del estudio adicional de las gráficas

Más detalles

ESTADÍSTICA DE LA PROBABILIDAD GUIA 2: CÁLCULO BÁSICO DE PROBABILIDADES Y REGLAS DE PROBABILIDAD DOCENTE: SERGIO ANDRÉS NIETO DUARTE

ESTADÍSTICA DE LA PROBABILIDAD GUIA 2: CÁLCULO BÁSICO DE PROBABILIDADES Y REGLAS DE PROBABILIDAD DOCENTE: SERGIO ANDRÉS NIETO DUARTE ESTADÍSTICA DE LA PROBABILIDAD GUIA 2: CÁLCULO BÁSICO DE PROBABILIDADES Y REGLAS DE PROBABILIDAD DOCENTE: SERGIO ANDRÉS NIETO DUARTE En la anterior sesión vimos los conceptos básicos de probabilidad y

Más detalles

Tutorial MT-m5. Matemática Tutorial Nivel Medio. Probabilidad

Tutorial MT-m5. Matemática Tutorial Nivel Medio. Probabilidad 356790356790 M ate m ática Tutorial MT-m5 Matemática 006 Tutorial Nivel Medio Probabilidad Matemática 006 Tutorial Probabilidad Marco Teórico. Probabilidad P(#). Definición: La probabilidad de ocurrencia

Más detalles

Apuntes de Probabilidad para 2º E.S.O

Apuntes de Probabilidad para 2º E.S.O Apuntes de Probabilidad para 2º E.S.O 1. Experimentos aleatorios Existen fenómenos donde la concurrencia de unas circunstancias fijas no permite anticipar cuál será el efecto producido. Por ejemplo, si

Más detalles

FICHA DE TRABAJO DE CÁLCULO DE PROBABILIDADES

FICHA DE TRABAJO DE CÁLCULO DE PROBABILIDADES FICHA DE TRABAJO DE CÁLCULO DE PROBABILIDADES EXPERIMENTO ALEATORIO: ESPACIO MUESTRAL Y SUCESOS 1) Se considera el experimento que consiste en la extracción de tres tornillos de una caja que contiene tornillos

Más detalles

Calculando la probabilidad de eventos independientes

Calculando la probabilidad de eventos independientes Bitácora del Estudiante Calculando la de eventos independientes Realiza las siguientes actividades, mientras trabajas con el tutorial. 1. Cuántas alternativas tiene Dígito para el primer tramo de la pista

Más detalles

RX 2º SECUNDARIA 10 SUMA Y RESTA DE MONOMIOS

RX 2º SECUNDARIA 10 SUMA Y RESTA DE MONOMIOS Las expresiones algebraicas más simples se llaman monomios. Recordemos cómo calcular los perímetros de las siguientes figuras: RX 2º SECUNDARIA 10 SUMA Y RESTA DE MONOMIOS En los polígonos regulares, es

Más detalles

ESTADISTICA GENERAL. PROBABILIDADES Profesor: Celso Celso Gonzales

ESTADISTICA GENERAL. PROBABILIDADES Profesor: Celso Celso Gonzales ESTADISTICA GENERAL PROBABILIDADES Profesor: Celso Celso Gonzales OBJETIVOS Desarrollar la comprensión de los conceptos básicos de probabilidad. Definir que es probabilidad Definir los enfoques clasico,

Más detalles

GUIA ESTADÍSTICA DE LA PROBABILIDAD TEMA: TÉCNICAS DE CONTEO DOCENTE: SERGIO ANDRÉS NIETO DUARTE

GUIA ESTADÍSTICA DE LA PROBABILIDAD TEMA: TÉCNICAS DE CONTEO DOCENTE: SERGIO ANDRÉS NIETO DUARTE GUIA ESTADÍSTICA DE LA PROBABILIDAD TEMA: TÉCNICAS DE CONTEO DOCENTE: SERGIO ANDRÉS NIETO DUARTE Principio aditivo Si una acción puede realizarse de n1 maneras diferentes y una segunda acción puede realizarse

Más detalles

MATEMÁTICAS-FACSÍMIL N 12

MATEMÁTICAS-FACSÍMIL N 12 MATEMÁTICAS-FACSÍMIL N 12 1. Se define A) B) C) E) 1 1 9 1 6 21 9 49 2 m p m p 2 1 =, luego = s t s t 5 2 2. En la figura ABC es equilátero y DCB es recto. Cuál(es) de las siguientes afirmaciones es(son)

Más detalles

Tutorial MT-a3. Matemática Tutorial Nivel Avanzado. Probabilidad y estadística

Tutorial MT-a3. Matemática Tutorial Nivel Avanzado. Probabilidad y estadística 12345678901234567890 M ate m ática Tutorial MT-a3 Matemática 2006 Tutorial Nivel Avanzado Probabilidad y estadística Matemática 2006 Tutorial Probabilidad y estadística Marco Teórico 1. Probabilidad P(#)

Más detalles

Probabilidad y Estadística

Probabilidad y Estadística Probabilidad y Estadística Probabilidad Ing. Ivannia Hasbum., M.Eng. Todos los días tomamos decisiones pero no las tomamos a ciegas, imaginar las probabilidades de varios resultados posibles nos ayuda

Más detalles

Aleatoriedad y probabilidad

Aleatoriedad y probabilidad LECCIÓN CONDENSADA 10.1 Aleatoriedad y probabilidad En esta lección simularás procesos aleatorios hallarás probabilidades experimentales basadas en resultados de un gran número de ensayos calcularás probabilidades

Más detalles

Probabilidad. Experimento aleatorio

Probabilidad. Experimento aleatorio Probabilidad Pierre Simón Laplace 1749-1827 Astrónomo, físico y matemático francés. Creó una curiosa fórmula para expresar la probabilidad de que el sol saliera por el horizonte. Así: d 1 P d 2 Donde d

Más detalles

Pensamiento probabilístico

Pensamiento probabilístico Pensamiento probabilístico por Sandra Pérez Márquez CONCEPTOS BÁSICOS Experimento: Dentro del área probabilística, un experimento es definido como un fenómeno que ocurre en la naturaleza y específicamente,

Más detalles

b) Cuántas posibilidades hay para que una pareja de candidatos uno de cada partido se oponga entre sí en la elección final?

b) Cuántas posibilidades hay para que una pareja de candidatos uno de cada partido se oponga entre sí en la elección final? Eslin Karina Montero Vargas A1336 1/0/03 REGLA DE LA SUMA Suma de formas REGLA DEL PRODUCTO Multiplicación de formas Ejemplo: 3 panes, cafés y 5 queques 1p 1c c 1 q q 3q 4q 5q 1 q q 3q 4q 5q p 1c c 1 q

Más detalles

2. Las calificaciones de 50 alumnos en Matemáticas han sido las siguientes:

2. Las calificaciones de 50 alumnos en Matemáticas han sido las siguientes: NOMBRE Y APELLIDOS: INSTRUCCIONES: 1. Realizar las actividades en el orden indicado. 2. Entregarlas en hojas numeradas y en funda de plástico. 3. Cada actividad deberá contener tanto el enunciado como

Más detalles

Teoría de conjuntos y probabilidad

Teoría de conjuntos y probabilidad Teoría de conjuntos y probabilidad M.Sc. Cindy Calderón Arce Lic. Rebeca Soĺıs Ortega Jornada de capacitación CIEMAC Alajuela 2016 Junio, 2016 Jornada de capacitación 1 / 21 Contenidos 1 2 3 2 / 21 Colección

Más detalles