CRECER. La estatura media de los chicos y las chicas de Holanda en 1998 está representada en el siguiente gráfico.


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "CRECER. La estatura media de los chicos y las chicas de Holanda en 1998 está representada en el siguiente gráfico."

Transcripción

1 CRECER La juventud se hace más alta La estatura media de los chicos y las chicas de Holanda en 1998 está representada en el siguiente gráfico. Pregunta Desde 1980 la estatura media de las chicas de 20 años ha aumentado 2,3 cm, hasta alcanzar los 170,6 cm. Cuál era la estatura media de las chicas de 20 años en 1980? Respuesta: cm

2 Pregunta Explica cómo el gráfico muestra que la tasa de crecimiento de la estatura media de las chicas disminuye a partir de los 12 años en adelante. Pregunta De acuerdo con el gráfico anterior, en qué periodo de la vida las chicas son, por término medio, más altas que los chicos de su misma edad?

3 Crecer: Codificación estímulo PISA de Matemáticas Recurso didáctico de funciones y gráficas CRECER: RESPUESTAS Y CRITERIOS DE CORRECCIÓN Pregunta Desde 1980 la estatura media de las chicas de 20 años ha aumentado 2,3 cm, hasta alcanzar los 170,6 cm. Cuál era la estatura media de las chicas de 20 años en 1980? Respuesta: cm CRITERIOS DE CORRECCIÓN Máxima puntuación: Código 1: 168,3 cm (unidades ya dadas). Sin puntuación: Código 0: Código 9: Otras respuestas. Sin respuesta. CARACTERÍSTICAS DE LA PREGUNTA Idea principal: Cambio y relaciones Competencia matemática: Nivel 1 (Reproducción, definiciones y cálculos) Contexto: Científico Tipo de respuesta: Respuesta cerrada Dificultad: 477 (nivel 2) Porcentaje de aciertos: OCDE:... 67,0% España:... 66,5%

4 Pregunta Explica cómo el gráfico muestra que la tasa de crecimiento de la estatura media de las chicas disminuye a partir de los 12 años en adelante CRITERIOS DE CORRECCIÓN Máxima puntuación La clave es que la respuesta debe referirse al cambio de la pendiente del gráfico para las chicas. Esto puede hacerse explícita o implícitamente. Los códigos 11 y 12 son para la mención explícita de la fuerte pendiente de la curva del gráfico, mientras que el código 13 es para la comparación implícita utilizando la cantidad real de crecimiento antes y después de los 12 años de edad. Código 11: Se refiere a la reducida pendiente de la curva a partir de los 12 años, utilizando lenguaje cotidiano, no lenguaje matemático. No sigue yendo hacia arriba, se endereza. La curva se nivela. Es más plana después de los 12. La curva de las chicas se hace uniforme y la de los chicos se hace más grande. Se endereza y el gráfico de los chicos sigue subiendo. Código 12: Se refiere a la reducida pendiente de la curva a partir de los 12 años, utilizando lenguaje matemático. Se puede observar que el gradiente es menor. La tasa de cambio del gráfico disminuye a partir de los 12 años. El alumno calcula los ángulos de la curva con respecto al eje x antes y después de los 12 años. En general, si se utilizan palabras como gradiente, pendiente, o tasa de cambio, considérese como utilización de lenguaje matemático. Código 13: Comparación del crecimiento real (la comparación puede ser implícita). Desde los 10 a los 12 años el crecimiento es aproximadamente de 15 cm, aunque el crecimiento desde los 12 a los 20 es solo de alrededor de 17 cm. La tasa media de crecimiento desde los 10 a los 12 años es de alrededor de 7,5 cm por año, y de alrededor de 2 cm por año desde los 12 a los 20 años.

5 Sin puntuación: Código 01: El alumno indica que la altura de las mujeres se sitúa debajo de la altura de los hombres, pero NO menciona la pendiente del gráfico de las mujeres o una comparación de la tasa de crecimiento de las mujeres antes y después de los 12 años. La línea de las mujeres está debajo de la línea de los hombres. Si el estudiante menciona que el gráfico de las mujeres se vuelve menos empinado, así como el hecho de que el gráfico se sitúa por debajo del gráfico de los hombres, entonces debe asignarse la máxima puntuación (códigos 11, 12 o 13). No se está buscando aquí una comparación entre los gráficos de los hombres y de las mujeres, de modo que debe ignorarse cualquier referencia a tal comparación, y juzgar en base al resto de la respuesta. Código 02: Otras respuestas incorrectas. Por ejemplo, la respuesta no se refiere a las características del gráfico, a pesar de que se pregunta claramente cómo el GRÁFICO muestra Las chicas maduran antes. Porque las mujeres pasan la pubertad antes de los hombres y tienen antes el aceleramiento de su crecimiento. Las chicas no crecen mucho después de los 12. [Se da una afirmación de que las chicas crecen más lentamente después de los 12 años de edad y no se hace referencia al gráfico]. Código 99: Sin respuesta CARACTERÍSTICAS DE LA PREGUNTA Idea principal: Cambio y relaciones Competencia matemática: Nivel 2 (Conexiones e integración para resolver problemas) Contexto: Científico Tipo de respuesta: Respuesta cerrada Dificultad: 574 (nivel 4) Porcentaje de aciertos: OCDE:... 44,8% España:... 36,5% Pregunta De acuerdo con el gráfico anterior, en qué periodo de la vida las chicas son, por término medio, más altas que los chicos de su misma edad?......

6 CRITERIOS DE CORRECCIÓN Máxima puntuación: Código 21: Se proporciona el intervalo correcto, de 11 a 13 años. Entre la edad de 11 y 13. Desde los 11 a los 13 años, las chicas son más altas que los chicos como promedio Código 22: Se afirma que las chicas son más altas que los chicos cuando tienen 11 y 12 años. (Esta respuesta es correcta en el lenguaje cotidiano, porque significa lo mismo que el intervalo de 11 a 13). Las chicas son más altas que los chicos cuando tienen 11 y 12 años. 11 y 12 años. Puntuación parcial: Código 11: Otros subconjuntos de (11, 12, 13), no incluidos en la sección de máxima puntuación. 12 a ,2 a 12,8. Sin puntuación: Código 00: Otras respuestas Las chicas son más altas que los chicos cuando son mayores de 13 años. Las chicas son más altas que los chicos desde los 10 a los 11 años. Código 99: Sin respuesta. CARACTERÍSTICAS DE LA PREGUNTA Idea principal: Cambio y relaciones Competencia matemática: Nivel 1 (Reproducción, definiciones y cálculos) Contexto: Científico Tipo de respuesta: Respuesta abierta Dificultad: Puntuación 2: 525 (nivel 3) Puntuación 1: 420 (Nivel 1)

7 Porcentaje de aciertos: Puntuación 2 OCDE:...54,7% España:...62,4% Puntuación 1 OCDE:...28,1% España:...19,2%

A continuación se presenta la información de la altura promedio para el año de 1998 en Holanda de hombres y mujeres jóvenes.

A continuación se presenta la información de la altura promedio para el año de 1998 en Holanda de hombres y mujeres jóvenes. M150: Creciendo A) Presentación del problema LOS JOVENES CRECEN MAS ALTO A continuación se presenta la altura promedio para el año de 1998 en Holanda de hombres y mujeres jóvenes. B) Preguntas del problema

Más detalles

MANZANOS. Pregunta Completa la tabla: n=1 n=2 n=3 n=4. n= Número de manzanos Números de coníferas

MANZANOS. Pregunta Completa la tabla: n=1 n=2 n=3 n=4. n= Número de manzanos Números de coníferas MANZANOS Un agricultor planta manzanos en un terreno cuadrado. Con objeto de proteger los manzanos del viento planta coníferas alrededor de la totalidad del huerto. Aquí ves un esquema de esta situación

Más detalles

EL TIPO DE CAMBIO. Mei-Ling se enteró de que el tipo de cambio entre el dólar de Singapur y el rand sudafricano era de:

EL TIPO DE CAMBIO. Mei-Ling se enteró de que el tipo de cambio entre el dólar de Singapur y el rand sudafricano era de: EL TIPO DE CAMBIO Mei-Ling, ciudadana de Singapur, estaba realizando los preparativos para ir a Sudáfrica como estudiante de intercambio durante 3 meses. Necesitaba cambiar algunos dólares de Singapur

Más detalles

MONOPATÍN. Marcos es un gran fan del monopatín. Entra en una tienda denominada PATINADORES para mirar algunos precios.

MONOPATÍN. Marcos es un gran fan del monopatín. Entra en una tienda denominada PATINADORES para mirar algunos precios. MONOPATÍN Marcos es un gran fan del monopatín. Entra en una tienda denominada PATINADORES para mirar algunos precios. En esta tienda puedes comprar un monopatín completo. Pero también puedes comprar una

Más detalles

BARCOS DE VELA. Pregunta 1

BARCOS DE VELA. Pregunta 1 BARCOS DE VELA El noventa y cinco por ciento del comercio mundial se realiza por mar gracias a unos 50.000 buques cisterna, graneleros y buques portacontenedores. La mayoría de estos barcos utilizan diesel.

Más detalles

Pruebas de Matemáticas

Pruebas de Matemáticas Capítulo 1 Pruebas de Matemáticas Las preguntas se presentan agrupadas en unidades, con un texto y/o imagen que sirven de estímulo común. En esta presentación se respeta la organización original en unidades

Más detalles

M465: Tanque de Agua. A) Presentación del problema

M465: Tanque de Agua. A) Presentación del problema M465: Tanque de Agua A) Presentación del problema El diagrama muestra la forma y dimensiones de un tanque de almacenamiento de agua. Al inicio el tanque está vacío. Una llave está llenando el tanque a

Más detalles

Guía de Ejercicios Estadística. Nombre del Estudiante:

Guía de Ejercicios Estadística. Nombre del Estudiante: Colegio Raimapu Departamento de Matemática Guía de Ejercicios Estadística Nombre del Estudiante: V Medio Debes copiar cada enunciado en tu cuaderno y realizar el desarrollo, indica la respuesta correcta

Más detalles

LA CARIES DENTAL: RESPUESTAS Y CRITERIOS DE CORRECCIÓN

LA CARIES DENTAL: RESPUESTAS Y CRITERIOS DE CORRECCIÓN La caries dental: Codificación estímulo PISA de Ciencias Recurso didáctico de Biología LA CARIES DENTAL: RESPUESTAS Y Pregunta 1 1 0 9 Cuál es el papel de las bacterias en la aparición de la caries dental?

Más detalles

ESTADISTICA. Tradicionalmente la aplicación del término estadística se ha utilizado en tres ámbitos:

ESTADISTICA. Tradicionalmente la aplicación del término estadística se ha utilizado en tres ámbitos: ESTADISTICA Tradicionalmente la aplicación del término estadística se ha utilizado en tres ámbitos: a) Estadística como enumeración de datos. b) Estadística como descripción, es decir, a través de un análisis

Más detalles

VENDER PERIÓDICOS. En Zedland dos periódicos quieren contratar vendedores. Los siguientes anuncios muestran cómo les pagan a sus vendedores.

VENDER PERIÓDICOS. En Zedland dos periódicos quieren contratar vendedores. Los siguientes anuncios muestran cómo les pagan a sus vendedores. VENDER PERIÓDICOS En dos periódicos quieren contratar vendedores. Los siguientes anuncios muestran cómo les pagan a sus vendedores. LA ESTRELLA DE ZEDLAND NECESITAS DINERO EXTRA? VENDE NUESTRO PERIÓDICO

Más detalles

EVOLUCIÓN Actualmente la mayoría de los caballos tienen un perfil alargado y pueden correr rápido.

EVOLUCIÓN Actualmente la mayoría de los caballos tienen un perfil alargado y pueden correr rápido. EVOLUCIÓN Actualmente la mayoría de los caballos tienen un perfil alargado y pueden correr rápido. Los científicos han encontrado esqueletos fósiles de animales que son similares a los caballos. Los consideran

Más detalles

Tercero Medio MATEMÁTICA

Tercero Medio MATEMÁTICA Guía de ejercitación Funciones: eponencial, logarítmica raíz cuadrada Programa Tercero Medio MATEMÁTICA I. Mapa conceptual FUNCIONES Son de la forma Son de la forma Son de la forma f() = a f() = log a

Más detalles

CONTENIDOS MÍNIMOS del ÁREA DE MATEMÁTICAS

CONTENIDOS MÍNIMOS del ÁREA DE MATEMÁTICAS Dpto. de Matemáticas IES Las Breñas 4º ESO OPCIÓN B CONTENIDOS MÍNIMOS del ÁREA DE MATEMÁTICAS 1: Números reales. Septiembre-2016 Números no racionales. Expresión decimal - Reconocimiento de algunos irracionales.

Más detalles

Introducción. Flujo Eléctrico.

Introducción. Flujo Eléctrico. Introducción La descripción cualitativa del campo eléctrico mediante las líneas de fuerza, está relacionada con una ecuación matemática llamada Ley de Gauss, que relaciona el campo eléctrico sobre una

Más detalles

FUNCIONES CON DESCARTES. HOJA DE TRABAJO

FUNCIONES CON DESCARTES. HOJA DE TRABAJO FUNCIONES CON DESCARTES. HOJA DE TRABAJO Escena 1 a) Inventa un texto que ilustre de forma clara el gráfico. b) Cuál es la variable independiente y en qué unidad se mide? c) Cuál es la variable dependiente

Más detalles

INSTITUTO SUPERIOR DE COMERCIO EDUARDO FREI MONTALVA. GUIA DE FISICA N 3. NOMBRE CURSO: Segundo FECHA: 27 DE JUNIO AL 8 DE JULIO

INSTITUTO SUPERIOR DE COMERCIO EDUARDO FREI MONTALVA. GUIA DE FISICA N 3. NOMBRE CURSO: Segundo FECHA: 27 DE JUNIO AL 8 DE JULIO INSTITUTO SUPERIOR DE COMERCIO EDUARDO FREI MONTALVA. GUIA DE FISICA N 3 Tema: Gráficas del Movimiento Uniformemente Acelerado (MRUA) Objetivos de Aprendizaje: - Interpretar gráficos del MRUA -Calcular

Más detalles

Lección 21: Pirámides de edades

Lección 21: Pirámides de edades LECCIÓN 21 Lección 21: Pirámides de edades En la lección anterior vimos cómo se distribuyen las personas que atiende el Instituto Nacional de Educación para los Adultos (INEA) en diferentes entidades con

Más detalles

Ecuaciones exponenciales y logaritmicas

Ecuaciones exponenciales y logaritmicas Ecuaciones exponenciales y logaritmicas Cuando hacemos preguntas relacionadas a funciones exponenciales o logaritmicas generalmente obtendremos una ecuación logarimica o exponencial. Elevé el número 3

Más detalles

FUNCIONES y = f(x) ESO3

FUNCIONES y = f(x) ESO3 Las correspondencias entre conjunto de valores o magnitudes se pueden expresar de varias formas: con un enunciado, con una tabla, con una gráfica, o con una fórmula o expresión algebraica o analítica.

Más detalles

SESIÓN 14 DERIVADAS SUCESIVAS DE UNA FUNCION, DE MÁXIMOS Y MÍNIMOS Y LA CONCAVIDAD DE UNA CURVA APLICANDO EL CRITERIO DE LA SEGUNDA DERIVADA

SESIÓN 14 DERIVADAS SUCESIVAS DE UNA FUNCION, DE MÁXIMOS Y MÍNIMOS Y LA CONCAVIDAD DE UNA CURVA APLICANDO EL CRITERIO DE LA SEGUNDA DERIVADA SESIÓN 14 DERIVADAS SUCESIVAS DE UNA FUNCION, DE MÁXIMOS Y MÍNIMOS Y LA CONCAVIDAD DE UNA CURVA APLICANDO EL CRITERIO DE LA SEGUNDA DERIVADA I. CONTENIDOS: 1. Derivadas sucesivas de una función 2. Concavidad

Más detalles

ESTADÍSTICA SEMANA 3

ESTADÍSTICA SEMANA 3 ESTADÍSTICA SEMANA 3 ÍNDICE MEDIDAS DESCRIPTIVAS... 3 APRENDIZAJES ESPERADOS... 3 DEFINICIÓN MEDIDA DESCRIPTIVA... 3 MEDIDAS DE POSICIÓN... 3 MEDIDAS DE TENDENCIA CENTRAL... 4 MEDIA ARITMÉTICA O PROMEDIO...

Más detalles

HIDRAULICA EJERCICIOS PRUEBA

HIDRAULICA EJERCICIOS PRUEBA UNIVERSIDAD DIEGO PORTALES ESCUELA DE INGENIERIA OBRAS CIVILES HIDRAULICA EJERCICIOS PRUEBA 1. Para un canal trapezoidal de ancho basal b = 6 m y taludes (2/1) (H/V), pendiente 0,3%, coeficiente de rugosidad

Más detalles

Guía N 2 Desigualdades e Inecuaciones. p < 0 E) x E) N.A IV) > 2 x C) x > 4 B) 4

Guía N 2 Desigualdades e Inecuaciones. p < 0 E) x E) N.A IV) > 2 x C) x > 4 B) 4 Colegio Raimapu Departamento de Matemática Guía N Desigualdades e Inecuaciones Nombre del Estudiante: π ) Para el conjunto de números reales A = R / es verdadero que: I) A II), A III) A ) Qué condición

Más detalles

La derivada. Razón de cambio promedio e instantánea

La derivada. Razón de cambio promedio e instantánea La derivada En esta sección empezamos con el estudio del concepto más importante de este curso. La derivada, la cual vamos a definir más adelante, es una herramienta poderosísima que ayuda a ingenieros,

Más detalles

PREGUNTAS DE EJEMPLO EDUCACIÓN MATEMÁTICA PRIMER NIVEL MEDIO

PREGUNTAS DE EJEMPLO EDUCACIÓN MATEMÁTICA PRIMER NIVEL MEDIO PREGUNTAS DE EJEMPLO EDUCACIÓN MATEMÁTICA PRIMER NIVEL MEDIO VALIDACIÓN DE ESTUDIOS DECRETO Nº257 LEA LA INFORMACIÓN Y RESPONDA LAS PREGUNTAS 1 Y 2. 1. Francisco desea pintar una pieza que tiene dos paredes

Más detalles

EJERCICIOS RESUELTOS DE CÁLCULO DE ÁREAS POR INTEGRACIÓN

EJERCICIOS RESUELTOS DE CÁLCULO DE ÁREAS POR INTEGRACIÓN EJERCICIOS RESUELTOS DE CÁLCULO DE ÁREAS POR INTEGRACIÓN.- Calcular el área encerrada por la función: y = 9, el eje OX, y las rectas = f 9 Se trata de un triángulo de base y altura 9 9 El área sombreada

Más detalles

La estación espacial Mir se mantuvo en órbita 15 años y durante este tiempo dio la vuelta a la Tierra aproximadamente 86,500 veces.

La estación espacial Mir se mantuvo en órbita 15 años y durante este tiempo dio la vuelta a la Tierra aproximadamente 86,500 veces. M543: Vuelo espacial A) Presentación del problema La estación espacial Mir se mantuvo en órbita 15 años y durante este tiempo dio la vuelta a la Tierra aproximadamente 86,500 veces. El tiempo más largo

Más detalles

Bloque 1. Contenidos comunes. (Total: 3 sesiones)

Bloque 1. Contenidos comunes. (Total: 3 sesiones) 4º E.S.O. OPCIÓN A 1.1.1 Contenidos 1.1.1.1 Bloque 1. Contenidos comunes. (Total: 3 sesiones) Planificación y utilización de procesos de razonamiento y estrategias de resolución de problemas, tales como

Más detalles

UNIVERSIDAD AUTÓNOMA DE BAJA CALIFORNIA

UNIVERSIDAD AUTÓNOMA DE BAJA CALIFORNIA UNIVERSIDAD AUTÓNOMA DE BAJA CALIFORNIA FACULTAD DE INGENIERÍA CAMPUS MEXICALI TABLA DE ESPECIFICACIONES DEL EXAMEN COLEGIADO DE CÁLCULO DIFERENCIAL Eje curricular Contenidos Relevancia Cantidad de especificaciones

Más detalles

Aplicación: cálculo de áreas XII APLICACIÓN: CÁLCULO DE ÁREAS

Aplicación: cálculo de áreas XII APLICACIÓN: CÁLCULO DE ÁREAS XII APLICACIÓN: CÁLCULO DE ÁREAS El estudiante, hasta este momento de sus estudios, está familiarizado con el cálculo de áreas de figuras geométricas regulares a través del uso de fórmulas, como el cuadrado,

Más detalles

PLANO DE LA BIBLIOTECA

PLANO DE LA BIBLIOTECA PLANO DE LA BIBLIOTECA SALIDA Referencia Referencia Referencia 000 ASEOS SALIDA 999 999 900 800 700 600 500 400 300 200 100 000 Ficción Ficción CD-ROM y PC con Internet Novedades ENTRADA Fotocopiadoras

Más detalles

CONCENTRACIÓN DE UN FÁRMACO

CONCENTRACIÓN DE UN FÁRMACO CONCENTRACIÓN DE UN FÁRMACO A una mujer ingresada en un hospital le ponen una inyección de penicilina. Su cuerpo va descomponiendo gradualmente la penicilina de modo que, una hora después de la inyección,

Más detalles

Interpretación de gráficas 1

Interpretación de gráficas 1 Interpretación de gráficas 1 Dos ejemplos sencillos. 1. El precio de un bolígrafo en la papelería cercana es de 0,30. Calcula y escribe en la tabla siguiente el precio de los bolígrafos que se indican.

Más detalles

Matemáticas UNIDAD 5 CONSIDERACIONES METODOLÓGICAS. Material de apoyo para el docente. Preparado por: Héctor Muñoz

Matemáticas UNIDAD 5 CONSIDERACIONES METODOLÓGICAS. Material de apoyo para el docente. Preparado por: Héctor Muñoz CONSIDERACIONES METODOLÓGICAS Material de apoyo para el docente UNIDAD 5 Preparado por: Héctor Muñoz Diseño Gráfico por: www.genesisgrafica.cl LA RELACIÓN DE PROPORCIONALIDAD 1. DESCRIPCIÓN GENERAL DE

Más detalles

CM2 ENRICH CREUS CARNICERO Nivel 2

CM2 ENRICH CREUS CARNICERO Nivel 2 CM ENRICH CREUS CARNICERO Nivel Unidad Cónicas Conocimientos previos CONOCIMIENTOS PREVIOS PARA CÓNICAS Antes de comenzar con el Trabajo Práctico, necesitás repasar algunas cuestiones como: ) graficar

Más detalles

TEORÍA DE LA CONDUCTA DEL CONSUMIDOR Y DE LA DEMANDA

TEORÍA DE LA CONDUCTA DEL CONSUMIDOR Y DE LA DEMANDA S_A._LECV TEORÍA DE LA CONDUCTA DEL CONSUMIDOR DE LA DEMANDA LA FUNCIÓN DE PREFERENCIA Todos los individuos tratan de alcanzar la satisfacción con un ingreso limitado. Este esfuerzo más o menos consciente,

Más detalles

Medidas de Tendencia Central. Dra. Noemí L. Ruiz Limardo Derechos de Autor Reservados Revisado 2010

Medidas de Tendencia Central. Dra. Noemí L. Ruiz Limardo Derechos de Autor Reservados Revisado 2010 Medidas de Tendencia Central Dra. Noemí L. Ruiz Limardo Derechos de Autor Reservados Revisado 2010 Objetivos de Lección Conocer cuáles son las medidas de tendencia central más comunes y cómo se calculan

Más detalles

Llery Ponce, David Preiss, Mónica Núñez

Llery Ponce, David Preiss, Mónica Núñez Llery Ponce, David Preiss, Mónica Núñez ([email protected]) Qué es un problema matemático? Acontecimientos que contienen una petición de explicitación de alguna información desconocida, que puede ser determinada

Más detalles

Módulo 3. Herramientas y técnicas sanitarias para la valoración enfermera del crecimiento, desarrollo físico y estado nutricional

Módulo 3. Herramientas y técnicas sanitarias para la valoración enfermera del crecimiento, desarrollo físico y estado nutricional Módulo 3. Herramientas y técnicas sanitarias para la valoración enfermera del crecimiento, desarrollo físico y estado nutricional Pregunta 1 Cuál de los siguientes parámetros no es evaluado en el terst

Más detalles

Una función f, definida en un intervalo dterminado, es creciente en este intervalo, si para todo x

Una función f, definida en un intervalo dterminado, es creciente en este intervalo, si para todo x Apuntes de Matemáticas II. CBP_ ITSA APLICACIONES DE LA DERIVADA.- CRECIMIENTO Y DECRECIMIENTO DE UNA FUNCIÓN En una función se puede analizar su crecimiento o decrecimiento al mirar la variación que experimentan

Más detalles

Materia: Matemática de Octavo Tema: Función afín

Materia: Matemática de Octavo Tema: Función afín Materia: Matemática de Octavo Tema: Función afín Alguna vez has mantenido un seguimiento de la cantidad de libros que has leído en un período de tiempo? Mira a Kendra. Kendra y sus amigas han estado leyendo

Más detalles

Diferenciabilidad en un intervalo

Diferenciabilidad en un intervalo Diferenciabilidad en un intervalo Ahora que conocemos cómo calcular la derivada de una función en un punto conviene hacer la pregunta más general: «Cómo podemos saber si una derivada se puede derivar en

Más detalles

SESIÓN 15 APLICACIÓN DE LA DERIVADA EN RAZONES DE CAMBIO

SESIÓN 15 APLICACIÓN DE LA DERIVADA EN RAZONES DE CAMBIO SESIÓN 15 APLICACIÓN DE LA DERIVADA EN RAZONES DE CAMBIO I. CONTENIDOS: 1. Conceptos básicos que definen una razón de cambio 2. Aplicaciones en la solución de diversos tipos de problemas 3. Estrategias

Más detalles

Técnico Profesional FÍSICA

Técnico Profesional FÍSICA Programa Técnico Profesional FÍSICA Movimiento III: movimientos con aceleración constante Nº Ejercicios PSU 1. En un gráfi co velocidad / tiempo, el valor absoluto de la pendiente y el área entre la recta

Más detalles

Objetivos: Principal: Investigar las propiedades de un gas a presión constante. Secundario: Determinar la tasa de enfriamiento de un cuerpo.

Objetivos: Principal: Investigar las propiedades de un gas a presión constante. Secundario: Determinar la tasa de enfriamiento de un cuerpo. ! " # $ %& ' () ) Objetivos: Principal: Investigar las propiedades de un gas a presión constante. Secundario: Determinar la tasa de enfriamiento de un cuerpo. Conceptos a afianzar: Descripción termodinámica

Más detalles

Profr. Efraín Soto Apolinar. Variación inversa. entonces,

Profr. Efraín Soto Apolinar. Variación inversa. entonces, Variación inversa La función racional más sencilla es: Esta función en palabras nos dice que cuando x crece el valor de y decrece en la misma proporción. Por ejemplo, si el valor de x crece al doble, el

Más detalles

Ecuaciones de la tangente y la normal

Ecuaciones de la tangente y la normal Ecuaciones de la tangente la normal Ahora que sabemos cómo calcular la pendiente de una recta tangente a una curva dada su ecuación, independientemente de que ésta sea una función o no lo sea, podemos

Más detalles

Máximos y mínimos usando la segunda derivada

Máximos y mínimos usando la segunda derivada Máimos mínimos usando la segunda derivada Ahora que sabemos que la segunda derivada nos da información acerca de la primera derivada, vamos a utilizarla para calcular los máimos mínimos de funciones. Ya

Más detalles

FUNCIONES EXPONENCIALES

FUNCIONES EXPONENCIALES FUNCIONES EXPONENCIALES 8.1.1 8.1.6 En estas secciones, los alumnos generalizarán lo que han aprendido sobre las progresiones geométricas para investigar funciones exponenciales. Los alumnos estudiarán

Más detalles

Guía de Ejercicios Funciones. Debes copiar cada enunciado en tu cuaderno y realizar el desarrollo, indica la respuesta correcta en la guía 2-1-

Guía de Ejercicios Funciones. Debes copiar cada enunciado en tu cuaderno y realizar el desarrollo, indica la respuesta correcta en la guía 2-1- Colegio Raimapu Departamento de Matemática Guía de Ejercicios Funciones Nombre del Estudiante: IV Medio Debes copiar cada enunciado en tu cuaderno realizar el desarrollo, indica la respuesta correcta en

Más detalles

DERIVADA DE UNA FUNCIÓN DEFINIDA EN FORMA PARAMÉTRICA

DERIVADA DE UNA FUNCIÓN DEFINIDA EN FORMA PARAMÉTRICA (Apuntes en revisión para orientar el aprendizaje) DERIVADA DE UNA FUNCIÓN DEFINIDA EN FORMA PARAMÉTRICA f( t) f: ; t a, b y g() t De la regla de la cadena dy dy dt d dt d En donde dt se puede calcular

Más detalles

Cinemática. Planificación de unidad Física de PSI

Cinemática. Planificación de unidad Física de PSI Cinemática. Planificación de unidad Física de PSI Objetivos Movimiento en una dimensión 1) Los alumnos deben comprender las relaciones generales que existen entre la posición, la velocidad y la aceleración

Más detalles

EL DIARIO DE SEMMELWEIS

EL DIARIO DE SEMMELWEIS TEXTO 1 EL DIARIO DE SEMMELWEIS Julio de 1846. La semana próxima ocuparé el puesto de Director del Primer Pabellón de la clínica de maternidad en el Hospital General de Viena. Me alarmé cuando me enteré

Más detalles

PISA (2000, 2003) Ítems liberados. Matemáticas

PISA (2000, 2003) Ítems liberados. Matemáticas PISA (2000, 2003) Ítems liberados Matemáticas PISA 2000 - Matemáticas 2000 1. Manzanas 2. Superficie de un continente 3. Velocidad 4. Triángulos 5. Granjas 2003 1. Caminar 2. Cubos 3. Crecer 4. Robos 5.

Más detalles

5 Continuidad y derivabilidad de funciones reales de varias variables reales.

5 Continuidad y derivabilidad de funciones reales de varias variables reales. 5 Continuidad y derivabilidad de funciones reales de varias variables reales. 5.1 Funciones reales de varias variables reales. Curvas de nivel. Continuidad. 5.1.1 Introducción al Análisis Matemático. El

Más detalles

Localizar y extraer: extraer información. Encontrar dos datos formulados explícitamente en un texto descriptivo gráfico.

Localizar y extraer: extraer información. Encontrar dos datos formulados explícitamente en un texto descriptivo gráfico. Integrar e interpretar: conseguir una comprensión global. Identificar la idea principal de un texto descriptivo gráfico. Código 1: B. Singhania estableció un nuevo récord mundial. Código 0: Otras respuestas.

Más detalles

DERIVADA DE LA FUNCIONES BÁSICAS TANGENTE, COTANGENTE, SECANTE Y COSECANTE

DERIVADA DE LA FUNCIONES BÁSICAS TANGENTE, COTANGENTE, SECANTE Y COSECANTE DERIVADA DE LA FUNCIONES BÁSICAS TANGENTE, COTANGENTE, SECANTE Y COSECANTE Sugerencias para quien imparte el curso: En esta sección de la propuesta didáctica se parte de plantear un problema de optimización

Más detalles

MÓDULO 3 HERRAMIENTAS Y TÉCNICAS SANITARIAS PARA LA VALORACIÓN ENFERMERA DEL CRECIMIENTO, DESARROLLO FÍSICO Y ESTADO NUTRICIONAL

MÓDULO 3 HERRAMIENTAS Y TÉCNICAS SANITARIAS PARA LA VALORACIÓN ENFERMERA DEL CRECIMIENTO, DESARROLLO FÍSICO Y ESTADO NUTRICIONAL MÓDULO 3 HERRAMIENTAS Y TÉCNICAS SANITARIAS PARA LA VALORACIÓN ENFERMERA DEL CRECIMIENTO, DESARROLLO FÍSICO Y ESTADO NUTRICIONAL Pregunta 1 Qué se considera desarrollo estatural aumentado? a. 2 ó más percentiles

Más detalles

EXAMEN DE SEPTIEMBRE, MATEMÁTICAS I. 1. (2.5 ptos) Sean f y g funciones con derivadas primeras y segundas continuas de las que se sabe que

EXAMEN DE SEPTIEMBRE, MATEMÁTICAS I. 1. (2.5 ptos) Sean f y g funciones con derivadas primeras y segundas continuas de las que se sabe que EXAMEN DE SEPTIEMBRE, MATEMÁTICAS I DEBE CONTESTAR ÚNICAMENTE A 4 DE LOS SIGUIENTES 5 EJERCICIOS 1. (.5 ptos) Sean f y g funciones con derivadas primeras y segundas continuas de las que se sabe que Sea

Más detalles

Plan de clase (1/3) Escuela: Fecha: Profr. (a): Curso: Matemáticas 9 Eje temático: F. E. y M.

Plan de clase (1/3) Escuela: Fecha: Profr. (a): Curso: Matemáticas 9 Eje temático: F. E. y M. Plan de clase (1/3) Escuela: Fecha: Profr. (a): Curso: Matemáticas 9 Eje temático: F. E. y M. Contenido: 9.4.2 Análisis de las características de los cuerpos que se generan al girar sobre un eje, un triángulo

Más detalles

Aplicaciones de la línea recta

Aplicaciones de la línea recta 1 FACULTAD DE CIENCIAS EXACTAS Y NATURALES SEMILLERO DE MATEMÁTICAS GRADO: 10 TALLER Nº: 4 SEMESTRE II RESEÑA HISTÓRICA Aplicaciones de la línea recta RESEÑA HISTÓRICA EUCLÍDES Nació: 365 AC en Alejandría,

Más detalles

Resolvemos problemas usando esquemas gráficos

Resolvemos problemas usando esquemas gráficos SEXTO GRADO - UNIDAD 1 - SESIÓN 06 Resolvemos problemas usando esquemas gráficos En esta sesión, los niños y las niñas aprenderán a resolver problemas de comparación con dos operaciones empleando esquemas

Más detalles

Unidad V. 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales.

Unidad V. 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales. Unidad V Aplicaciones de la derivada 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales. Una tangente a una curva es una recta que toca la curva en un solo punto y tiene la misma

Más detalles

SESIÓN 8 MAXIMOS Y MÍNIMOS DE UNA FUNCION, APLICACIONES DE LOS MAXIMOS Y MINIMOS

SESIÓN 8 MAXIMOS Y MÍNIMOS DE UNA FUNCION, APLICACIONES DE LOS MAXIMOS Y MINIMOS SESIÓN 8 MAXIMOS Y MÍNIMOS DE UNA FUNCION, APLICACIONES DE LOS MAXIMOS Y MINIMOS I. CONTENIDOS: 1. Máximos y mínimos de una función (definiciones) 2. Máximos y mínimos (metodología de cálculo) 3. Ejercicios

Más detalles

A continuación se recogen los bloques de contenido directamente relacionados con los criterios de evaluación por unidad del segundo trimestre.

A continuación se recogen los bloques de contenido directamente relacionados con los criterios de evaluación por unidad del segundo trimestre. UNIDADES DIDÁCTICAS 4º DIVERSIFICACIÓN A continuación se recogen los bloques de contenido directamente relacionados con los criterios de evaluación por unidad del segundo trimestre. 1 UNIDADES DIDÁCTICAS

Más detalles

Consideremos dos situaciones que se muestran en los cuadros a continuación:

Consideremos dos situaciones que se muestran en los cuadros a continuación: Materia: Matemática de Octavo Tema: Relaciones entre conjuntos Supongamos que deseas predecir el costo de ir a ver una película en el cine, le mandas un mensaje de texto a algunos de tus amigos que han

Más detalles

Programa(s) Educativo(s): CHIHUAHUA Créditos 5.4. Teoría: 4 horas Práctica PROGRAMA DEL CURSO: Taller: CALCULO DIFERENCIAL E INTEGRAL

Programa(s) Educativo(s): CHIHUAHUA Créditos 5.4. Teoría: 4 horas Práctica PROGRAMA DEL CURSO: Taller: CALCULO DIFERENCIAL E INTEGRAL DES: Ingeniería Programa(s) Educativo(s): Ingeniería de Software Tipo de materia: Obligatoria Clave de la materia: PS0102 UNIVERSIDAD AUTÓNOMA DE Cuatrimestre: 1 CHIHUAHUA Área en plan de estudios: Ciencias

Más detalles

Contenido. Pobreza. Distribución del ingreso y Desigualdad. PET, PEI, PEA en condiciones de pobreza. Resumen de Indicadores.

Contenido. Pobreza. Distribución del ingreso y Desigualdad. PET, PEI, PEA en condiciones de pobreza. Resumen de Indicadores. Contenido 1 Pobreza 2 Distribución del ingreso y Desigualdad 3 PET, PEI, PEA en condiciones de pobreza 4 Resumen de Indicadores 5 PIB y Pobreza POBREZA 1 Antecedentes 2 3 4 5 6 7 Síntesis Metodológica

Más detalles

Reconocimiento de la integral a partir del método de los trapecios.

Reconocimiento de la integral a partir del método de los trapecios. Grado 11 Matematicas - Unidad 4 Cómo hallo el área de superficies curvas? Bienvenidos al cálculo integral Tema Reconocimiento de la integral a partir del método de los trapecios. Nombre: Curso: En muchas

Más detalles

Grado en Ingeniería de Tecnologías de Telecomunicación. Universidad de Sevilla. Matemáticas I. Departamento de Matemática Aplicada II.

Grado en Ingeniería de Tecnologías de Telecomunicación. Universidad de Sevilla. Matemáticas I. Departamento de Matemática Aplicada II. Grado en Ingeniería de Tecnologías de Telecomunicación Universidad de Sevilla Matemáticas I. Departamento de Matemática Aplicada II. Tema 1. Curvas Paramétricas. Nota Informativa: Para explicar en clase

Más detalles

Microeconomía Básica

Microeconomía Básica Microeconomía Básica Colección de 240 preguntas tipo test, resueltas por Eduardo Morera Cid, Economista Colegiado. Cada sesión constará de una batería de 20 preguntas tipo test y las respuestas a las propuestas

Más detalles

MATEMÁTICA: TRABAJO PRÁCTICO 2. Funciones. 1) Carlos está enfermo. Veamos la gráfica de la evolución de su temperatura.

MATEMÁTICA: TRABAJO PRÁCTICO 2. Funciones. 1) Carlos está enfermo. Veamos la gráfica de la evolución de su temperatura. ILSE-2º Año- MATEMÁTICA: TRABAJO PRÁCTICO 2 Funciones 1) Carlos está enfermo. Veamos la gráfica de la evolución de su temperatura. a) Cuántos días ha estado enfermo el paciente? (Se considera normal una

Más detalles

PROGRAMACIÓN DE LOS CONTENIDOS DE MATEMÁTICAS EN LA PREPARACIÓN DE LA PARTE COMÚN DE LA PRUEBA DE ACCESO A LOS C.F.G.S. (Opción C)

PROGRAMACIÓN DE LOS CONTENIDOS DE MATEMÁTICAS EN LA PREPARACIÓN DE LA PARTE COMÚN DE LA PRUEBA DE ACCESO A LOS C.F.G.S. (Opción C) PROGRAMACIÓN DE LOS CONTENIDOS DE MATEMÁTICAS EN LA PREPARACIÓN DE LA PARTE COMÚN DE LA PRUEBA DE ACCESO A LOS C.F.G.S. (Opción C) I.E.S. Universidad Laboral de Málaga Curso 2015/2016 PROGRAMACIÓN DE LA

Más detalles

UNIDAD 12.- Estadística. Tablas y gráficos (tema12 del libro)

UNIDAD 12.- Estadística. Tablas y gráficos (tema12 del libro) UNIDAD 12.- Estadística. Tablas y gráficos (tema12 del libro) 1. ESTADÍSTICA: CLASES Y CONCEPTOS BÁSICOS En sus orígenes históricos, la Estadística estuvo ligada a cuestiones de Estado (recuentos, censos,

Más detalles

Unidad II: Curvas en R2 y ecuaciones paramétricas

Unidad II: Curvas en R2 y ecuaciones paramétricas Unidad II: Curvas en R2 y ecuaciones paramétricas 2.1 Ecuación paramétrica de la línea recta. La recta constituye una parte fundamental de las matemáticas. Existen numerosas formas de representar una recta,

Más detalles

Áreas entre curvas. Ejercicios resueltos

Áreas entre curvas. Ejercicios resueltos Áreas entre curvas Ejercicios resueltos Recordemos que el área encerrada por las gráficas de dos funciones f y g entre las rectas x = a y x = b es dada por Ejercicios resueltos b a f x g x dx Ejercicio

Más detalles

Proyectos de trabajos para Matemáticas

Proyectos de trabajos para Matemáticas Proyectos de trabajos para Matemáticas 14 de julio de 2011 Resumen En cada uno de los Proyectos elegidos, los estudiantes deberán completar las etapas siguientes: Comprender el problema. Tomarse el tiempo

Más detalles

SEGUNDA EVALUACIÓN DE FÍSICA NIVEL 0-A

SEGUNDA EVALUACIÓN DE FÍSICA NIVEL 0-A ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS SEGUNDA EVALUACIÓN DE FÍSICA NIVEL 0-A (Abril 14 del 2010) NO ABRIR esta prueba hasta que los profesores den la autorización. En esta

Más detalles

CÁLCULO DIFERENCIAL. Máximos y Mínimos. Equipo 2

CÁLCULO DIFERENCIAL. Máximos y Mínimos. Equipo 2 CÁLCULO DIFERENCIAL Equipo 2 Máximos y Mínimos Estos son los ejercicios que deberá el equipo explicar dentro de la clase, este equipo tendrá un máximo de 5 integrantes, y deberá valerse de materiales o

Más detalles

DETERMINACIÓN DE LA CONSTANTE UNIVERSAL DE LOS GASES

DETERMINACIÓN DE LA CONSTANTE UNIVERSAL DE LOS GASES DETERMINACIÓN DE LA CONSTANTE UNIERSAL DE LOS GASES La ley general de los gases relaciona la presión P, el volumen, la temperatura T, el número de moles n, y la constante universal de los gases R, como

Más detalles

Matemáticas para estudiantes de Química

Matemáticas para estudiantes de Química Matemáticas para estudiantes de Química PROYECTO EDITORIAL BIBLIOTECA DE QUÍMICAS Director: Carlos Seoane Prado Catedrático de Química Orgánica Universidad Complutense de Madrid Matemáticas para estudiantes

Más detalles

Guía 3 Del estudiante Modalidad a distancia. Modulo CÁLCULO UNIVARIADO INGENIERÍA DE SISTEMAS II SEMESTRE

Guía 3 Del estudiante Modalidad a distancia. Modulo CÁLCULO UNIVARIADO INGENIERÍA DE SISTEMAS II SEMESTRE Guía 3 Del estudiante Modalidad a distancia Modulo CÁLCULO UNIVARIADO INGENIERÍA DE SISTEMAS II SEMESTRE DATOS DE IDENTIFICACION TUTOR Luis Enrique Alvarado Vargas Teléfono 435 29 52 CEL. 310 768 90 67

Más detalles

PRESENTACIÓN DE LA PÁGINA WEB DE MATEMÁTICAS EN PRIMARIA

PRESENTACIÓN DE LA PÁGINA WEB DE MATEMÁTICAS EN PRIMARIA PRESENTACIÓN DE LA PÁGINA WEB DE MATEMÁTICAS EN PRIMARIA SIGMA 33 José Ramón Gregorio Guirles (*) La página web que ahora os presento ha sido elaborada a lo largo de los meses de junio y julio de 2008,

Más detalles

Igualdad de género en la evaluación PISA

Igualdad de género en la evaluación PISA Igualdad de género en la evaluación PISA Montserrat Gomendio Kindelan Secretaria de Estado de Educación, 5 de marzo de 2015 Diferencias entre los resultados de chicos y chicas PISA 2012 En Lectura las

Más detalles

ESCUELA SECUNDARIA DEL ESTADO PROBLEMARIO PARA EXAMEN, CORRESPONDIENTE AL BLOQUE UNO DE MATEMÁTICAS II ALUMNO(A): GRUPO: N. L.

ESCUELA SECUNDARIA DEL ESTADO PROBLEMARIO PARA EXAMEN, CORRESPONDIENTE AL BLOQUE UNO DE MATEMÁTICAS II ALUMNO(A): GRUPO: N. L. 1. Pensé en un número, lo dividí entre tres y después le sumé dos. Si el resultado es cero, en qué número pensé? A) 18 B) 6 C) 6 D) 18 2. Cuál es el resultado del producto? 6. En la ciudad de Chihuahua

Más detalles

ESTÁNDARES STANDARDS Grado/Grade: 3 Secundaria / 9th grade Materia/Subject: QUÍMICA Bloque 2 Block 2 Iniciando Emerging

ESTÁNDARES STANDARDS Grado/Grade: 3 Secundaria / 9th grade Materia/Subject: QUÍMICA Bloque 2 Block 2 Iniciando Emerging Relacionar la estructura atómica de la materia a partir de los números cuánticos precediendo su comportamiento en átomos de número atómico menor a 20 Materia/Subject: QUÍMICA Describir el átomo desde el

Más detalles

Título del trabajo: Regulación afectiva y sincronía en el juego entre la madre y el bebé como precursores del desarrollo de la competencia simbólica.

Título del trabajo: Regulación afectiva y sincronía en el juego entre la madre y el bebé como precursores del desarrollo de la competencia simbólica. Título del trabajo: Regulación afectiva y sincronía en el juego entre la madre y el bebé como precursores del desarrollo de la competencia simbólica. Autores: Ruth Feldman (Universidad Bar Llan, Ramar

Más detalles

CONTENIDO OBJETIVOS TEMÁTICOS HABILIDADES ESPECIFICAS

CONTENIDO OBJETIVOS TEMÁTICOS HABILIDADES ESPECIFICAS UNIDAD: REGIONAL CENTRO EJE BÁSICO, DIVISIÓN DE INGENIERÍA DEPARTAMENTO: MATEMATICAS ACADEMIA: (SERVICIO) HORAS DE CATEDRA CARACTER: OBLIGATORIA CREDITOS: 08 TEORICA:03 TALLER: 02 80 REQUISITO: Cálculo

Más detalles

SESIÓN 11 DERIVACIÓN DE FUNCIONES TRIGONOMETRICAS INVERSAS

SESIÓN 11 DERIVACIÓN DE FUNCIONES TRIGONOMETRICAS INVERSAS SESIÓN 11 DERIVACIÓN DE FUNCIONES TRIGONOMETRICAS INVERSAS I. CONTENIDOS: 1. Función inversa, conceptos y definiciones 2. Derivación de funciones trigonométricas inversas 3. Ejercicios resueltos 4. Estrategias

Más detalles

FACULTAD DE CIENCIAS AGROPECUARIAS ESCUELA ACADÉMICO PROFESIONAL DE MEDICINA VETERINARIA MATEMATICA II SILABO

FACULTAD DE CIENCIAS AGROPECUARIAS ESCUELA ACADÉMICO PROFESIONAL DE MEDICINA VETERINARIA MATEMATICA II SILABO FACULTAD DE CIENCIAS AGROPECUARIAS ESCUELA ACADÉMICO PROFESIONAL DE MEDICINA VETERINARIA I. DATOS GENERALES MATEMATICA II SILABO 1.1. Código : 04130 1.2. Requisito : Matemática I (04123) 1.3. Ciclo Académico

Más detalles

CALCULO INTEGRAL CONCEPTOS DE AREA BAJO LA CURVA. (Se utiliza el valor de la función en el extremo izquierdo de cada subintervalo)

CALCULO INTEGRAL CONCEPTOS DE AREA BAJO LA CURVA. (Se utiliza el valor de la función en el extremo izquierdo de cada subintervalo) CALCULO INTEGRAL CONCEPTOS DE AREA BAJO LA CURVA El problema del área, el problema de la distancia tanto el valor del área debajo de la gráfica de una función como la distancia recorrida por un objeto

Más detalles

UNIDAD II. INTEGRAL DEFINIDA Y LOS MÉTODOS DE INTEGRACIÓN. Tema: LA INTEGRAL DEFINIDA

UNIDAD II. INTEGRAL DEFINIDA Y LOS MÉTODOS DE INTEGRACIÓN. Tema: LA INTEGRAL DEFINIDA UNIDAD II. INTEGRAL DEFINIDA Y LOS MÉTODOS DE INTEGRACIÓN Tema: LA INTEGRAL DEFINIDA La integral definida Anteriormente se mencionó que la Integral Indefinida da como resultado una familia de funciones

Más detalles

1. La Distribución Normal

1. La Distribución Normal 1. La Distribución Normal Los espacios muestrales continuos y las variables aleatorias continuas se presentan siempre que se manejan cantidades que se miden en una escala continua; por ejemplo, cuando

Más detalles

INVESTIGACIÓN DE ESTACIONAMIENTO

INVESTIGACIÓN DE ESTACIONAMIENTO INVESTIGACIÓN DE ESTACIONAMIENTO Estacionamientos Reservar un lugar por cada 25 cajones o fracción (mínimo uno). Para el cálculo de la demanda el porcentaje mayor a 0.50 se considera como un cajón Ubicación

Más detalles

Trayectoria, es el camino recorrido por un móvil para ir de un punto a otro. Entre dos puntos hay infinitas trayectorias, infinitos caminos.

Trayectoria, es el camino recorrido por un móvil para ir de un punto a otro. Entre dos puntos hay infinitas trayectorias, infinitos caminos. Taller de lectura 3 : Cinemática Cinemática, es el estudio del movimiento sin atender a sus causas. Se entiende por movimiento, el cambio de posición de una partícula con relación al tiempo y a un punto

Más detalles

Unidad II. 2.1 Concepto de variable, función, dominio, condominio y recorrido de una función.

Unidad II. 2.1 Concepto de variable, función, dominio, condominio y recorrido de una función. Unidad II Funciones 2.1 Concepto de variable, función, dominio, condominio y recorrido de una función. Función En matemática, una función (f) es una relación entre un conjunto dado X (llamado dominio)

Más detalles