ƒ : {(1, 4), (2, 5), (3, 6), (4, 7)}.


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "ƒ : {(1, 4), (2, 5), (3, 6), (4, 7)}."

Transcripción

1 SECCIÓN 5. Funciones inversas 5. Funciones inversas Verificar que una función es la inversa de otra. Determinar si una función tiene una función inversa. Encontrar la derivada de una función inversa. f Funciones inversas Recordar de la sección P. que una función se puede representar por un conjunto de pares ordenados. Por ejemplo, la función ƒ() de A {,,, } en B {, 5,, 7}, se puede escribir como ƒ : {(, ), (, 5), (, ), (, 7)}. f Dominio de ƒ recorrido o rango de ƒ Dominio de ƒ recorrido o rango de ƒ Figura 5.0 Por el intercambio de la primera segunda coordenadas de cada par ordenado se puede formar la función inversa de ƒ. Esta función se denota por ƒ. Ésta es una función de B en A, se escribe como ƒ : {(, ), (5, ), (, ), (7, )}. Notar que el dominio de ƒ es el recorrido o rango de ƒ, viceversa, como se ilustra en la figura 5.0. Las funciones ƒ ƒ tienen el efecto de deshacer cada una a la otra. Esto es, al componer f con ƒ o la composición de ƒ con ƒ, se obtiene la función identidad. ƒ(ƒ ()) ƒ (ƒ()) EXPLORACIÓN Cálculo de las funciones inversas Eplicar cómo deshacer lo que hace cada una de las siguientes funciones. Usar la eplicación para escribir la función inversa de ƒ. a) b) c) d) e) f) f 5 f f f f f Usar una herramienta de graficación para representar cada función junto con su inversa. Qué observación se puede hacer acerca de cada par de gráficas? DEFINICIÓN DE FUNCIÓN INVERSA Una función g es la función inversa de la función ƒ si ƒ(g()) = para todo en el dominio de g g(ƒ()) para todo en el dominio de ƒ. La función g se denota por ƒ (se lee como inversa de f ). NOTA Aunque la notación utilizada para la función inversa se parece a la notación eponencial, es un uso distinto del como superíndice. Esto es, en general, ƒ () ƒ(). He aquí algunas observaciones relevantes acerca de las funciones inversas.. Si g es la función inversa de ƒ, entonces ƒ es la función inversa de g.. El dominio de ƒ es igual al recorrido o rango de ƒ el recorrido o rango ƒ es igual que el dominio de ƒ.. Una función puede no tener función inversa, pero si la tiene, la función inversa es única (ver el ejercicio 0). Se puede pensar en ƒ como una operación que deshace lo hecho por ƒ. Por ejemplo, la resta deshace lo que la suma hace, la división deshace lo que hace la multiplicación. Usar la definición de función inversa para comprobar: ƒ() c ƒ () c son funciones inversas una de la otra. ƒ() c f, c 0, son funciones inversas una de la otra. c

2 CAPÍTULO 5 Funciones logarítmica, eponencial otras funciones trascendentes EJEMPLO Comprobación de funciones inversas Demostrar que las funciones siguientes son mutuamente inversas. f g Solución Como el dominio el recorrido o rango de ƒ g son todos los números reales, se puede concluir que las dos funciones compuestas eisten para todo. La composición de ƒ con g se da por g() = + = f() = f g son funciones inversas una de la otra Figura 5. f g. La composición de g con f es g f. Puesto que ƒ(g()) g (ƒ()), se puede concluir que ƒ g son inversas una de otra (ver la figura 5.). AYUDA DE ESTUDIO En el ejemplo, comparar las funciones ƒ g en forma verbal. Para ƒ: Primero elevar al cubo, luego multiplicar por, después restar. Para g: Primero sumar, después dividir entre, luego sacar raíz cúbica. Se ve cómo se deshace el proceso? = f() (a, b) = En la figura 5., las gráficas de ƒ g ƒ parecen el reflejo una de la otra respecto a la recta. La gráfica de ƒ se obtiene reflejando la de ƒ en la línea. Esta idea generaliza el siguiente teorema. (b, a) TEOREMA 5. PROPIEDAD DE REFLEXIÓN DE LAS FUNCIONES INVERSAS = f () La gráfica de ƒ contiene el punto (a, b) si sólo si la gráfica de ƒ contiene el punto (b, a). La gráfica de ƒ es un reflejo de la gráfica de ƒ en la recta Figura 5. DEMOSTRACIÓN Si (a, b) está en la gráfica de ƒ, entonces es ƒ(a) b se puede escribir f b f f a a. De forma que (b, a) está en la gráfica de ƒ, como se muestra en la figura 5.. Un argumento similar demuestra el teorema en la otra dirección.

3 SECCIÓN 5. Funciones inversas 5 a f(a) = f(b) = f() b Eistencia de una función inversa No todas las funciones tienen función inversa; el teorema 5. sugiere un criterio gráfico para aquellas que lo son: el criterio de la recta horizontal para una función inversa. Esta prueba establece que la función f tiene inversa si sólo si toda recta horizontal corta a la gráfica de ƒ a lo más en sólo un punto (figura 5.). El siguiente teorema eplica por qué la prueba de la recta horizontal es válida. (Recordar de la sección. que la función es estrictamente monótona si ésta es creciente o decreciente en todo su dominio.) Si una recta horizontal corta dos veces la gráfica de ƒ, entonces ƒ no es inectiva Figura 5. TEOREMA 5.7 EXISTENCIA DE LA FUNCIÓN INVERSA. Una función tiene función inversa si sólo si es inectiva.. Si f es estrictamente monótona en todo su dominio, entonces ésta es inectiva, por tanto, tiene inversa. DEMOSTRACIÓN Para demostrar la segunda parte del teorema, recordar de la sección P. que f es inectiva si para en su dominio f f Ahora, se escoge en el dominio de ƒ. Si, entonces, como ƒ es estrictamente monótona, se deduce que f < f o f > f. En cualquier caso, ƒ( ) ƒ( ). Por tanto, ƒ es inectiva en el intervalo. La demostración de la primera parte del teorema se deja como ejercicio (ver el ejercicio 09). f() = + EJEMPLO Eistencia de la función inversa a) Dado que ƒ es creciente en todo su dominio, tiene función inversa Cuál de las funciones tiene inversa? a) f b) f Solución f() = + (, ) (0, ) (, ) a) En la figura 5.a se observa una gráfica de ƒ, que aparenta que ƒ es creciente en todo su dominio. Para verificar esto, notar que su derivada, ƒ(), es positiva para todos los valores reales de. Por tanto, ƒ es estrictamente monótona debe tener una función inversa. b) En la figura 5.b se observa una gráfica de ƒ, en la que se puede ver que la función no satisface el criterio de la recta horizontal. En otras palabras, no es inectiva. Por ejemplo, ƒ toma el mismo valor cuando, 0. ƒ() ƒ() ƒ(0) No inectiva. b) Dado que ƒ no es inectiva, no tiene una función inversa Figura 5. En consecuencia, por el teorema 5.7, ƒ no admite inversa. NOTA Suele ser más fácil probar que una función tiene función inversa que hallarla. Por ejemplo, sería algebraicamente difícil hallar la función inversa del ejemplo a.

4 CAPÍTULO 5 Funciones logarítmica, eponencial otras funciones trascendentes A continuación se sugiere un procedimiento para encontrar la función inversa de una función. Estrategia para hallar la inversa de una función. Utilizar el teorema 5.7 para determinar si la función dada ƒ() tiene inversa.. Despejar como función de : = g() = ƒ ().. Intercambiar. La ecuación resultante es ƒ ().. Definir como dominio de f el recorrido de f. 5. Verificar que ƒ(ƒ ()) = ƒ (ƒ()). EJEMPLO Cálculo de la inversa de una función Hallar la función inversa de f. f () (, ) 0, ) ( (, 0 ) + (, ) = f() El dominio de ƒ, [0, ) es el recorrido o rango de ƒ Figura 5.5 Solución De la gráfica de f en la figura 5.5, aparece que f se incrementa sobre su dominio entero,. Para verificar esto, observar que f es positivo sobre el dominio de f. Así, f es estrictamente monótona debe tener una función inversa. Para encontrar una ecuación para la función inversa, sea f despejar en términos de. f Hacer ƒ(). Elevar al cuadrado. Despejar. Intercambiar. Sustituir por ƒ (). El dominio de ƒ es el recorrido o rango de ƒ, que es [0, ). Se puede verificar este resultado como sigue. f f, f f NOTA Recordar que se puede utilizar cualquier letra para representar la variable independiente. Así, f f f s s representan la misma función., 0

5 SECCIÓN 5. Funciones inversas 7 El teorema 5.7 es útil en el siguiente tipo de problemas. Supóngase una función que no es inectiva en su dominio. Al restringir el dominio a un intervalo en que la función sea estrictamente monótona, se obtiene una nueva función que a es inectiva en el dominio restringido. ( ), EJEMPLO Analizar si una función es inectiva Demostrar que la función ƒ() sen no es inectiva en toda la recta real. Después demostrar que [, ] es el intervalo más grande, centrado en el origen, en el que ƒ es estrictamente monótona. Solución Es claro que ƒ no es inectiva, a que muchos valores diferentes de dan un mismo valor de. Por ejemplo, sen(0) 0 sen(). ( ), f() = sen f es inectiva en el intervalo [, ] Figura 5. Además, ƒ es creciente en el intervalo abierto (, ), porque su derivada f cos es positiva en él. Por último, como en los puntos terminales a la derecha a la izquierda ha etremos relativos de la función seno, se puede concluir que la función ƒ es creciente en el intervalo cerrado [, ] que en cualquier otro intervalo maor, la función no es estrictamente monótona (ver la figura 5.). Derivada de la función inversa Los dos teoremas siguientes discuten la derivada de las funciones inversas. El razonamiento del teorema se sigue de la propiedad refleiva de la función inversa, como se muestra en la figura 5.. En el apéndice A pueden verse las demostraciones de los dos teoremas. TEOREMA 5. CONTINUIDAD Y DERIVABILIDAD DE LAS FUNCIONES INVERSAS Sea f una función cuo dominio es un intervalo I. Si ƒ tiene una función inversa, entonces los siguientes enunciados son verdaderos. EXPLORACIÓN Graficar las funciones inversas f g. Calcular la pendiente de f en (, ), (, ) (, 7), la pendiente de g en (, ), (, ) (7, ). Qué se observa? Qué ocurre en (0, 0)?. Si ƒ es continua en su dominio, entonces ƒ es continua en su dominio.. Si ƒ es creciente en su dominio, entonces ƒ es creciente en su dominio.. Si ƒ es decreciente en su dominio, entonces ƒ es decreciente en su dominio.. Si ƒ es derivable en c ƒ(c) 0, entonces f es derivable en ƒ(c). TEOREMA 5.9 LA DERIVADA DE UNA FUNCIÓN INVERSA Sea ƒ una función derivable en un intervalo I. Si ƒ tiene una función inversa g, entonces g es derivable para todo tal que ƒ(g()) 0. Además, g fg, fg 0.

6 CAPÍTULO 5 Funciones logarítmica, eponencial otras funciones trascendentes EJEMPLO 5 Cálculo de la derivada de una función inversa Sea f. a) Cuál es el valor de ƒ () para? b) Cuál es el valor de (ƒ )() para? Solución Notar que ƒ es una función inectiva, así que tiene una función inversa. a) Como ƒ() cuando, se sabe que ƒ (). b) Como la función ƒ es derivable tiene inversa, se puede aplicar el teorema 5.9 (con g ƒ ) se escribe f f f f. (, ) f () f() m = m = (, ) Las gráficas de las funciones inversas ƒ ƒ tienen pendientes recíprocas en los puntos (a, b) (b, a) Figura 5.7 Además, usando ƒ() =, se conclue que f f. En el ejemplo 5, notar que la pendiente en el punto (, ) de la gráfica de ƒ es la pendiente de ƒ en el punto (, ) es (ver la figura 5.7). Esta relación recíproca (que se sigue del teorema 5.9) puede escribirse como se muestra. Si g f, entonces f f d. El teorema 5.9 dice que d g d d fg f dd. Así que, d d dd. EJEMPLO Las gráficas de las funciones inversas tienen pendientes recíprocas Sea ƒ() (para 0) f. Probar que las pendientes de las gráficas de f f son recíprocas en los puntos siguientes. a) (, ) (, ) b) (, 9) (9, ) 0 m = (, ) m = (, ) (, 9) f() = m = f () = m = (9, ) En (0, 0), la derivada de ƒ es 0, la derivada de ƒ no eiste Figura 5. 0 Solución Las derivadas de ƒ ƒ están dadas por f f. a) En (, ), la pendiente de la gráfica de ƒ es ƒ() (). En (, ) la pendiente de la gráfica de ƒ es f. b) En el punto (, 9), la pendiente de la gráfica de ƒ es ƒ() (). En (9, ), la pendiente de la gráfica de ƒ es f 9 9. Así, en ambos casos, las pendientes son recíprocas, como ilustra la figura 5..

7 SECCIÓN 5. Funciones inversas 9 5. Ejercicios En los ejercicios a, mostrar que ƒ g son funciones inversas a) analíticamente b) gráficamente.. f 5, g f, f, f, f, f, f, f, En los ejercicios 9 a, relacionar la gráfica de la función con la gráfica de su inversa. [Las gráficas de las funciones inversas están rotuladas a), b), c) d).] a) b) 5 c) d) , 0, g g g g, g g g, 0 0 < En los ejercicios a, usar una herramienta de graficación para representar la función. Entonces, usar la prueba de la recta horizontal para determinar si la función es inectiva en su dominio entero así tiene una función inversa.. f. 5. f sen sin. 7. hs. s 9. f ln 0.. g 5. En los ejercicios a 0, a) encontrar la función inversa de f, b) graficar f f sobre la misma configuración de ejes coordenados, c) describir la relación entre las gráficas d) establecer el dominio el rango de f f En los ejercicios a, a) encontrar la función inversa de ƒ. b) Usar una herramienta de graficación para representar ƒ ƒ en la misma pantalla. c) Describir la relación entre las gráficas d) establecer el dominio así como el recorrido o rango de ƒ ƒ.. f.. f, f f f 5 f f f, 0 f, f, f 7 f 0 f 5 f gt t f 5 h f 5 f 5 En los ejercicios 7, usar la gráfica de la función f para hacer una tabla de valores para los puntos dados. Entonces, hacer una segunda tabla que pueda usarse para encontrar f bosquejar la gráfica de f f f 5

ANÁLISIS MATEMÁTICO I (2012)

ANÁLISIS MATEMÁTICO I (2012) ANÁLISIS MATEMÁTICO I (2012) TRABAJO PRÁCTICO 4 Etremos y teorema del valor medio Ejercicio 1. Decir si las siguientes afirmaciones son correctas. En caso contrario, justificar la respuesta. 1. El teorema

Más detalles

7.FUNCIÓN REAL DE VARIABLE REAL

7.FUNCIÓN REAL DE VARIABLE REAL 7.FUNCIÓN REAL DE VARIABLE REAL 7.1 CONCEPTOS PREVIOS Dados dos conjuntos A={ 1,, 3,...} y B={y 1, y, y 3,...}, el par ordenado ( m, y n ) indica que el elemento m del conjunto A está relacionado con el

Más detalles

-, se pide: b) Calcula el área del recinto limitado por dicha gráfica, el eje horizontal y la vertical que pasa por el máximo relativo de la curva.

-, se pide: b) Calcula el área del recinto limitado por dicha gráfica, el eje horizontal y la vertical que pasa por el máximo relativo de la curva. EJERCICIOS PARA PREPARAR EL EXAMEN GLOBAL DE ANÁLISIS ln ) Dada la función f ( ) = +, donde ln denota el logaritmo - 4 neperiano, se pide: a) Determinar el dominio de f y sus asíntotas b) Calcular la recta

Más detalles

CONTINUIDAD Y DERIVABILIDAD. DERIVADAS

CONTINUIDAD Y DERIVABILIDAD. DERIVADAS CONTINUIDAD Y DERIVABILIDAD. DERIVADAS. Dada la función f (), (, ), definir f () y f () de forma que f sea continua sen(π ) en todo el intervalo cerrado [, ]. : f () f () π 5 si. Estudiar la continuidad

Más detalles

Mapa Curricular: Funciones y Modelos

Mapa Curricular: Funciones y Modelos A.PR.11.2.1 Determina el dominio y el alcance de las funciones a partir de sus diferentes representaciones. A.PR.11.2.2 Identifica y aplica las relaciones entre los puntos importantes de una función (ceros,

Más detalles

Criterio 1: Sea f una función derivable en (a,b). f es estrictamente creciente en el intervalo abierto (a, b) si f es positiva en dicho intervalo.

Criterio 1: Sea f una función derivable en (a,b). f es estrictamente creciente en el intervalo abierto (a, b) si f es positiva en dicho intervalo. UNIDAD. APLICACIONES DE LAS DERIVADAS.. Información etraída de la primera derivada.. Información etraída de la segunda derivada.. Derivabilidad en intervalos: Teorema de Rolle, del valor medio y Caucy..4

Más detalles

TEMA 3: CONTINUIDAD Y DERIVABILIDAD DE FUNCIONES REALES DE UNA VARIABLE REAL. f : R R

TEMA 3: CONTINUIDAD Y DERIVABILIDAD DE FUNCIONES REALES DE UNA VARIABLE REAL. f : R R TEMA 3: CONTINUIDAD Y DERIVABILIDAD DE FUNCIONES REALES DE UNA VARIABLE REAL. Concepto de función. Definición Se llama función (real de variable real) a toda aplicación f : R R f() que a cada número le

Más detalles

Unidad 3 Límites y continuidad. Universidad Diego Portales CALCULO I

Unidad 3 Límites y continuidad. Universidad Diego Portales CALCULO I Unidad Límites y continuidad Una vista preinar Qué es el cálculo? Los dos problemas fundamentales El área del conocimiento que llamamos Cálculo gira en torno a dos problemas geométricos fundamentales que

Más detalles

1 LIMITES Y DERIVADAS

1 LIMITES Y DERIVADAS 1 LIMITES Y DERIVADAS 2.1 LA TANGENTE Y PROBLEMAS DE LA VELOCIDAD Problema de la tangente Se dice que la pendiente de la recta tangente a una curva en el punto P es el ite de las rectas secantes PQ a medida

Más detalles

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 4. DERIVACIÓN

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 4. DERIVACIÓN FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 4. DERIVACIÓN 1.- Derivada de una función en un punto. El estudio de la derivada de una función en un punto surge con el problema geométrico

Más detalles

FUNCIONES DE UNA VARIABLE

FUNCIONES DE UNA VARIABLE FUNCIONES DE UNA VARIABLE 1- Definiciones 2- Algunas funciones reales 3- Ecuaciones de curvas planas en coordenadas cartesianas 4- Coordenadas polares 5- Coordenadas paramétricas 6- Funciones hiperbólicas

Más detalles

UNIVERSIDAD NACIONAL EXPERIMENTAL DEL TÁCHIRA VICE RECTORADO ACADÉMICO DECANATO DE DOCENCIA DEPARTAMENTO DE MATEMÁTICA Y FÍSICA

UNIVERSIDAD NACIONAL EXPERIMENTAL DEL TÁCHIRA VICE RECTORADO ACADÉMICO DECANATO DE DOCENCIA DEPARTAMENTO DE MATEMÁTICA Y FÍSICA UNIVERSIDAD NACIONAL EXPERIMENTAL DEL TÁCHIRA VICE RECTORADO ACADÉMICO DECANATO DE DOCENCIA DEPARTAMENTO DE MATEMÁTICA Y FÍSICA PROGRAMA DE MATEMÁTICA I Código: 0826101T Teoría: 4 horas/semana Pre-requisito:

Más detalles

1.5 Límites infinitos

1.5 Límites infinitos SECCIÓN.5 Límites infinitos 8.5 Límites infinitos Determinar ites infinitos por la izquierda por la derecha. Encontrar dibujar las asíntotas verticales de la gráfica de una función., cuando Límites infinitos

Más detalles

3.1 Extremos en un intervalo

3.1 Extremos en un intervalo 6 CAPÍTULO Aplicaciones de la derivada. Etremos en un intervalo Entender la definición de etremos de una función en un intervalo. Entender la definición de etremos s de una función en un intervalo abierto.

Más detalles

1. [2014] [EXT-A] a) La derivada de la función f(x) es: (x-1) 3 (x-3). Determine la función f(x) sabiendo que f(0) = 1. +2x+2. x 3

1. [2014] [EXT-A] a) La derivada de la función f(x) es: (x-1) 3 (x-3). Determine la función f(x) sabiendo que f(0) = 1. +2x+2. x 3 [4] [EXT-A] a) La derivada de la función f() es: (-) (-) Determine la función f() sabiendo que f() = b) Determine el límite: lim + ++ ++ + [4] [EXT-B] a) Dadas las funciones f() = y g() = - +, determine

Más detalles

Toda función es una relación, pero no toda relación es una función. Las relaciones multiformes NO son funciones. Relación uno a uno (biunívoca)

Toda función es una relación, pero no toda relación es una función. Las relaciones multiformes NO son funciones. Relación uno a uno (biunívoca) CONCEPTO TRADICIONAL DE FUNCIÓN Cuando dos variables están relacionadas en tal forma que a cada valor de la primera corresponde un valor de la segunda, se dice que la segunda es función de la primera.

Más detalles

Problemas de limites, continuidad y derivabilidad. Calcula los siguientes límites de funciones racionales, irracionales y exponenciales

Problemas de limites, continuidad y derivabilidad. Calcula los siguientes límites de funciones racionales, irracionales y exponenciales Problemas de limites, continuidad y derivabilidad Calcula los siguientes límites de funciones racionales, irracionales y eponenciales - ) = [ = = = = = = = . ) = [0. ] = = = = = = = = = 0 = [ = p=

Más detalles

DERIVADAS DERIVADAS. La siguiente tabla muestra el número de nacimientos en cada mes a lo largo de un año en una determinada población:

DERIVADAS DERIVADAS. La siguiente tabla muestra el número de nacimientos en cada mes a lo largo de un año en una determinada población: DERIVADAS INTRODUCCIÓN Una recta es tangente a una curva en un punto si solo tiene en común con la curva dicho punto. y 5 4 Recta tangente en (,) La pendiente de una recta es la tangente del ángulo que

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 7. Funciones reales de variable real CONCEPTOS BÁSICOS

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 7. Funciones reales de variable real CONCEPTOS BÁSICOS Unidad didáctica 7 Funciones reales de variable real CONCEPTOS BÁSICOS Se llama función real de variable real a cualquier aplicación f : D R con D Œ R, es decir, a cualquier correspondencia que asocia

Más detalles

f: D IR IR x f(x) v. indep. v. dependiente, imagen de x mediante f, y = f(x). A x se le llama antiimagen de y por f, y se denota por x = f -1 (y).

f: D IR IR x f(x) v. indep. v. dependiente, imagen de x mediante f, y = f(x). A x se le llama antiimagen de y por f, y se denota por x = f -1 (y). TEMA 8: FUNCIONES. 8. Función real de variable real. 8. Dominio de una función. 8.3 Características de una función: signo, monotonía, acotación, simetría y periodicidad. 8.4 Operaciones con funciones:

Más detalles

= x De este modo: Esto es un ejemplo de FUNCIÓN.

= x De este modo: Esto es un ejemplo de FUNCIÓN. IES Padre Poveda (Guadi) UNIDAD 6 FUNCIONES REALES. PROPIEDADES GLOBALES.. CONCEPTO DE FUNCIÓN. DOMINIO Y RECORRIDO. Recuerda que hay distintas ormas de epresar una unción. Enunciado o descripción verbal:

Más detalles

CORPORACION UNIFICADA NACIONAL DE EDUCACION SUPERIOR CUN DEPARTAMENTO DE CIENCIAS BASICAS

CORPORACION UNIFICADA NACIONAL DE EDUCACION SUPERIOR CUN DEPARTAMENTO DE CIENCIAS BASICAS CORPORACION UNIFICADA NACIONAL DE EDUCACION SUPERIOR CUN DEPARTAMENTO DE CIENCIAS BASICAS ASIGNATURA CALCULO DIFERENCIAL DOCENTE: LIC- ING: ROSMIRO FUENTES ROCHA UNIDAD Nº : FUNCIONES REALES. CONCEPTO

Más detalles

Propiedades de los límites

Propiedades de los límites SECCIÓN 3 Cálculo analítico de ites 59 3 Cálculo analítico de ites Evaluar un ite mediante el uso de las propiedades de los ites Desarrollar usar una estrategia para el cálculo de ites Evaluar un ite mediante

Más detalles

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio A-09 - Incorporado a la Enseñanza Oficial COLEGIO SAN PATRICIO - 0 - Prof. Celia R. Sánchez MATEMÁTICA - TRABAJO PRÁCTICO Nº 8 AÑO FUNCIÓN EXPONENCIAL Y LOGARÍTMICA - ECUACIONES POTENCIACIÓN: Ejercicio

Más detalles

FUNCIÓN. La Respuesta correcta es D

FUNCIÓN. La Respuesta correcta es D FUNCIONES FUNCIÓN La Respuesta correcta es D FUNCIÓN Función Continua: Es aquella en la que su gráfica se puede recorrer en forma ininterrumpida en toda su extensión. FUNCIÓN Función Discontinua: Es aquella

Más detalles

4 E.M. Curso: Unidad: Estadísticas Inferencial. Colegio SSCC Concepción. Depto. de Matemáticas. Nombre: CURSO: Unidad de Aprendizaje: FUNCIONES

4 E.M. Curso: Unidad: Estadísticas Inferencial. Colegio SSCC Concepción. Depto. de Matemáticas. Nombre: CURSO: Unidad de Aprendizaje: FUNCIONES Colegio SSCC Concepción Depto. de Matemáticas Unidad de Aprendizaje: FUNCIONES Capacidades/Destreza/Habilidad: Racionamiento Matemático/Calcular/ Resolver Valores/ Actitudes: Curso: E.M. 10 Respeto, Solidaridad,

Más detalles

Cálculo Diferencial en una variable

Cálculo Diferencial en una variable Tema 2 Cálculo Diferencial en una variable 2.1. Derivadas La derivada nos proporciona una manera de calcular la tasa de cambio de una función Calculamos la velocidad media como la razón entre la distancia

Más detalles

DERIVADAS 1.- TASA DE VARIACIÓN MEDIA DE UNA FUNCIÓN. Antes de dar la definición veamos unos ejemplos:

DERIVADAS 1.- TASA DE VARIACIÓN MEDIA DE UNA FUNCIÓN. Antes de dar la definición veamos unos ejemplos: DERIVADAS 1.- TASA DE VARIACIÓN MEDIA DE UNA FUNCIÓN. Antes de dar la definición veamos unos ejemplos: Definición: 2.- TASA DE VARIACIÓN INSTANTÁNEA. DEFINICIÓN DE DERIVADA DE UNA FUNCIÓN EN UN PUNTO.

Más detalles

UNIDAD 3. La derivada. Objetivos. Al terminar la unidad, el alumno:

UNIDAD 3. La derivada. Objetivos. Al terminar la unidad, el alumno: UNIDAD La derivada Objetivos Al terminar la unidad, el alumno: Calculará la derivada de funciones utilizando el álgebra de derivadas. Determinará la relación entre derivación y continuidad. Aplicará la

Más detalles

Aplicación de la Derivada

Aplicación de la Derivada Aplicación de la Derivada Etremos locales. Teorema del valor medio Habilidades 1.Define el concepto de etremos locales 2.Define el Teorema del valor etremo. Ilustra su significado geométricamente. 3.Define

Más detalles

Funciones 1. D = Dom ( f ) = x R / f(x) R. Recuerda como determinabas los dominios de algunas funciones: x x

Funciones 1. D = Dom ( f ) = x R / f(x) R. Recuerda como determinabas los dominios de algunas funciones: x x Funciones. DEFINICIÓN Y TERMINOLOGÍA.. Definición de función real de variable real. "Es toda correspondencia, f, entre un subconjunto D de números reales y R (o una parte de R), con la condición de que

Más detalles

Derivada y diferencial

Derivada y diferencial Derivada y diferencial Una cuestión, que aparece en cualquier disciplina científica, es la necesidad de obtener información sobre el cambio o la variación de determinadas cantidades con respecto al tiempo

Más detalles

8.1. Traslación de puntos. Investigación: Figuras en movimiento CONDENSADA

8.1. Traslación de puntos. Investigación: Figuras en movimiento CONDENSADA LECCIÓN CONDENSADA 8.1 Traslación de puntos En esta lección trasladarás figuras en el plano de coordenadas definirás una traslación al describir cómo afecta un punto general (, ) Una regla matemática que

Más detalles

Estudio de funciones mediante límites y derivadas

Estudio de funciones mediante límites y derivadas Estudio de funciones mediante límites y derivadas CVS0. El precio del billete de una línea de autobús se obtiene sumando dos cantidades, una fija y otra proporcional a los kilómetros recorridos. Por un

Más detalles

EJERCICIOS RESUELTOS DE DERIVADAS DE UNA FUNCIÓN REAL

EJERCICIOS RESUELTOS DE DERIVADAS DE UNA FUNCIÓN REAL EJERCICIOS RESUELTOS DE DERIVADAS DE UNA FUNCIÓN REAL Estudiar la continuidad y derivabilidad de las siguientes funciones y escribir su función derivada: si < ( ) f 7 si < 7 si b) f c) f La función f(

Más detalles

entonces las derivadas laterales existen y son iguales. y vale lo mismo. Si existen las derivadas laterales y son iguales, entonces existe f (a)

entonces las derivadas laterales existen y son iguales. y vale lo mismo. Si existen las derivadas laterales y son iguales, entonces existe f (a) DERIVADAS. TEMA 2. BLOQUE 1 1.- DERIVADA DE UNA FUNCIÓN EN UN PUNTO Se llama derivada de la función y = f ( en el punto de abscisa x = a al límite f ( f ( a f ( a = lím x a x a Si existe f (a entonces

Más detalles

TEMA 8: FUNCIONES. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco.

TEMA 8: FUNCIONES. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. 2009 TEMA 8: FUNCIONES. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. Manuel González de León. mgdl 01/01/2009 1º E.S.O. TEMA 08: Funciones. TEMA 08: FUNCIONES. 1. Correspondencia.

Más detalles

f p) 2 3x f q) f r) 4 x f s) x 6 f t) f u) x 3x f v) x 7x x x 9x

f p) 2 3x f q) f r) 4 x f s) x 6 f t) f u) x 3x f v) x 7x x x 9x .- Halla el dominio de deinición de las siguientes unciones polinómicas y racionales: a) b) 8 j) 9 4 d) 9 l) 7 ( ) 5 ( ) ( ) 4 p) q) r) 7 9 ( ) 8 7 9 ( ) 4 ( ) 4 ( ) ( ) s) 5 m) t) h) ( ) 7 ( ) 4 u) v)

Más detalles

Derivadas Parciales (parte 2)

Derivadas Parciales (parte 2) 40 Derivadas Parciales (parte 2) Ejercicio: Si donde y. Determinar Solución: Consideraremos ahora la situación en la que, pero cada una de las variables e es función de dos variables y. En este caso tiene

Más detalles

REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN.. Se pide: x

REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN.. Se pide: x 1 REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN IBJ05 1. Se considera la función f ( ). Se pide: a) Encontrar los intervalos donde esta función es creciente y donde es decreciente. ( puntos) b) Calcular las asíntotas.

Más detalles

DERIVADA DE UNA FUNCIÓN

DERIVADA DE UNA FUNCIÓN DERIVADA DE UNA FUNCIÓN 3URI/XLV~xH] Se estudia aquí uno de los conceptos fundamentales del cálculo diferencial: la derivada de una función. Además de la definición y su interpretación, se allarán las

Más detalles

Trigonometría Analítica. Sección 6.6 Funciones trigonométricas inversas

Trigonometría Analítica. Sección 6.6 Funciones trigonométricas inversas 6 Trigonometría Analítica Sección 6.6 Funciones trigonométricas inversas Funciones Inversas Recordar que para una función, f, tenga inversa, f -1, es necesario que f sea una función uno-a-uno. o Una función,

Más detalles

Desigualdades o inecuaciones lineales en una variable. Prof. Caroline Rodriguez Departamento de Matemáticas UPR - Arecibo

Desigualdades o inecuaciones lineales en una variable. Prof. Caroline Rodriguez Departamento de Matemáticas UPR - Arecibo Desigualdades o inecuaciones lineales en una variable Prof. Caroline Rodriguez Departamento de Matemáticas UPR - Arecibo Desigualdades Una desigualdad o inecuación usa símbolos como ,, para representar

Más detalles

Una matriz es un arreglo rectangular de números. Los números en el arreglo se llaman elementos de la matriz. ) ( + ( ) ( )

Una matriz es un arreglo rectangular de números. Los números en el arreglo se llaman elementos de la matriz. ) ( + ( ) ( ) MATRICES Una matriz es un arreglo rectangular de números. Los números en el arreglo se llaman elementos de la matriz. Ejemplo 1. Algunos ejemplos de matrices ( + ( ) ( + ( ) El tamaño o el orden de una

Más detalles

DERIVADAS DE FUNCIONES DE UNA VARIABLE

DERIVADAS DE FUNCIONES DE UNA VARIABLE DERIVADAS DE FUNCIONES DE UNA VARIABLE DERIVADAS DE FUNCIONES DE UNA VARIABLE [4.] Estudiar la derivabilidad de la función los puntos en los que esté definida. 3 f( ) y obtener f ( ) en En primer lugar

Más detalles

Funciones en explícitas

Funciones en explícitas Funciones en eplícitas.- Sea la función f() e, se pide:. Dominio.. Signo de f() en función de.. Asíntotas. 4. Crecimiento y decrecimiento. Máimos y mínimos relativos. 5. Concavidad y conveidad. Puntos

Más detalles

Derivación. Aproximaciones por polinomios.

Derivación. Aproximaciones por polinomios. Derivación... 1 1 Departamento de Matemáticas. Universidad de Alcalá de Henares. Matemáticas (Grado en Químicas) Contenidos Derivada 1 Derivada 2 3 4 5 6 Outline Derivada 1 Derivada 2 3 4 5 6 Definición

Más detalles

Mapa Curricular: Funciones y Modelos

Mapa Curricular: Funciones y Modelos A.PR.11.2.1 Determina el dominio y el alcance de las funciones a partir de sus diferentes representaciones. A.PR.11.2.2 Identifica y aplica las relaciones entre los puntos importantes de una función (ceros,

Más detalles

DERIVABILIDAD. 1+x 2. para x [1, 3]

DERIVABILIDAD. 1+x 2. para x [1, 3] 1 DERIVABILIDAD 1. Definir derivada y derivadas laterales de una función en un punto. Probar que la función f es derivable en =1 y que la derivada lateral por la derecha en =0 es infinito. para [0, 1)

Más detalles

3.4 Concavidad y el criterio de la segunda derivada

3.4 Concavidad y el criterio de la segunda derivada 90 CAPÍTULO 3 Aplicaciones de la derivada 3.4 Concavidad el criterio de la segunda derivada Determinar intervalos sobre los cuales una función es cóncava o cóncava. Encontrar cualesquiera puntos de infleión

Más detalles

Derivadas 1 1. FUNCIÓN DERIVABLE EN UN PUNTO, DERIVADA DE UNA FUNCIÓN EN UN PUNTO. CONCEPTO DE FUNCIÓN DERIVADA, DERIVADA SEGUNDA DE UNA FUNCIÓN.

Derivadas 1 1. FUNCIÓN DERIVABLE EN UN PUNTO, DERIVADA DE UNA FUNCIÓN EN UN PUNTO. CONCEPTO DE FUNCIÓN DERIVADA, DERIVADA SEGUNDA DE UNA FUNCIÓN. Derivadas. FUNCIÓN DERIVABLE EN UN PUNTO, DERIVADA DE UNA FUNCIÓN EN UN PUNTO. CONCEPTO DE FUNCIÓN DERIVADA, DERIVADA SEGUNDA DE UNA FUNCIÓN.. Función derivable en un punto, derivada de una función en

Más detalles

C.P.U. MATEMATICA Trabajo Práctico 2 FUNCIONES. FUNCIONES LINEAL, MÓDULO Y CUADRÁTICA. COMPOSICIÓN DE FUNCIONES Y FUNCIÓN INVERSA.

C.P.U. MATEMATICA Trabajo Práctico 2 FUNCIONES. FUNCIONES LINEAL, MÓDULO Y CUADRÁTICA. COMPOSICIÓN DE FUNCIONES Y FUNCIÓN INVERSA. UNSAM º cuatrimestre 008 I. FUNCIONES C.P.U. MATEMATICA Trabajo Práctico FUNCIONES. FUNCIONES LINEAL, MÓDULO Y CUADRÁTICA. COMPOSICIÓN DE FUNCIONES Y FUNCIÓN INVERSA.. De acuerdo a la siguiente descripción:

Más detalles

Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos:

Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: CONOCIMIENTOS PREVIOS. Vectores.. Conocimientos previos. Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: Trigonometría. Resolución de ecuaciones de primer grado. Sería

Más detalles

FUNCIONES ELEMENTALES Y PROPIEDADES

FUNCIONES ELEMENTALES Y PROPIEDADES . NOCIONES INTRODUCTORIAS.. Concepto de función. Dominio e Imagen. Una función es una relación entre dos variables, de forma que a cada valor de la variable independiente x, le asocia un único valor de

Más detalles

El subconjunto en el que se define la función se llama dominio o campo existencia de la función. Se designa por D.

El subconjunto en el que se define la función se llama dominio o campo existencia de la función. Se designa por D. Concepto de función Función real de variable real es toda correspondencia f que asocia a cada elemento de un determinado subconjunto de números reales, llamado dominio, otro número real (uno y sólo uno).

Más detalles

Información importante

Información importante Coordinación de Matemática I (MAT021) 1 er Semestre de 2010 Semana 8: Lunes 10 viernes 14 de Mayo Información importante El viernes 14 ser publicada la tarea preparatoria de Taller de Sala. Durante la

Más detalles

Para entender la diferencia entre una relación y una función primero analizaremos el concepto de cada uno.

Para entender la diferencia entre una relación y una función primero analizaremos el concepto de cada uno. FUNCIONES Diferencia entre relaciones y funciones Para entender la diferencia entre una relación y una función primero analizaremos el concepto de cada uno. Relación Es la correspondencia de un primer

Más detalles

Función Exponencial. Def.: Sea b IR + -{1}, se llama función exponencial de base b, denotada por Exp b, a la función Exp b :IR IR + x y=exp b (x)= b x

Función Exponencial. Def.: Sea b IR + -{1}, se llama función exponencial de base b, denotada por Exp b, a la función Exp b :IR IR + x y=exp b (x)= b x Función Eponencial Def.: Sea b + -{1}, se llama función eponencial de base b, denotada por Ep b, a la función Ep b : + Ep b ) b Ejemplo: Sea Ep : + Ep ) -4 - -2-1 0 1 2 4 1/81 1/27 1/9 1/ 1 9 27 81 DomEp

Más detalles

Clasificación y transformación de funciones

Clasificación y transformación de funciones Clasificación transformación de funciones En esta sección vamos a conocer la forma en como se han clasificado las funciones para su estudio. También vamos a conocer ciertas funciones que «hacen la transformación

Más detalles

REPASO DE FUNCIONES FUNCIONES REALES DE VARIABLE REAL

REPASO DE FUNCIONES FUNCIONES REALES DE VARIABLE REAL REPASO DE FUNCIONES FUNCIONES REALES DE VARIABLE REAL CORRESPONDENCIA. Se llama CORRESPONDENCIA entre dos conjuntos A y B a toda ley que asocia elementos del conjunto A con elementos del conjunto B. Se

Más detalles

Derivada. 1. Pendiente de la recta tangente a una curva

Derivada. 1. Pendiente de la recta tangente a una curva Nivelación de Matemática MTHA UNLP Derivada Pendiente de la recta tangente a una curva Definiciones básicas Dada una curva que es la gráfica de una función y = f() y sea P un punto sobre la curva La pendiente

Más detalles

Unidad II. 2.1 Concepto de variable, función, dominio, condominio y recorrido de una función.

Unidad II. 2.1 Concepto de variable, función, dominio, condominio y recorrido de una función. Unidad II Funciones 2.1 Concepto de variable, función, dominio, condominio y recorrido de una función. Función En matemática, una función (f) es una relación entre un conjunto dado X (llamado dominio)

Más detalles

******* Enunciados de Problemas *******

******* Enunciados de Problemas ******* ******* Enunciados de Problemas ******* CÁLCULO ESCUELA SUPERIOR DE LA MARINA CIVIL DIPLOMADO EN MÁQUINAS NAVALES DIPLOMADO EN NAVEGACIÓN MARÍTIMA ISIDORO PONTE ESMC EL NÚMERO REAL Sea o un número racional

Más detalles

ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES

ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES 1. Sea f : (0, + ) definida como f () = Ln a) Probar que la función derivada f es decreciente en todo su dominio. b) Determinar los intervalos de crecimiento

Más detalles

3.3 Funciones crecientes y decrecientes y el criterio de la primera derivada

3.3 Funciones crecientes y decrecientes y el criterio de la primera derivada SECCIÓN. Funciones crecientes decrecientes el criterio de la primera derivada 79. Funciones crecientes decrecientes el criterio de la primera derivada Determinar los intervalos sobre los cuales una función

Más detalles

Cálculo Infinitesimal 1. Cuestiones de examen (2010/2011 a 2015/2016)

Cálculo Infinitesimal 1. Cuestiones de examen (2010/2011 a 2015/2016) Cálculo Infinitesimal 1. Cuestiones de examen (2010/2011 a 2015/2016) 1. Justifíquese la verdad o falsedad de la siguiente afirmación: La suma de dos números irracionales iguales es irracional (enero 2011).

Más detalles

Derivadas laterales. Derivabilidad y continuidad en un punto. Derivabilidad y continuidad en un intervalo

Derivadas laterales. Derivabilidad y continuidad en un punto. Derivabilidad y continuidad en un intervalo Derivadas laterales Se define la derivada por la izquierda de f(x) en el punto x = a : Se define la derivada por la derecha de f(x) en el punto x = a : A ambas derivadas se les llama derivadas laterales.

Más detalles

Tema 2. FUNCIONES REALES DE VARIABLE REAL

Tema 2. FUNCIONES REALES DE VARIABLE REAL UAH Funciones reales de variable real 1 Tema FUNCIONES REALES DE VARIABLE REAL Concepto de función Dados dos conjuntos A y B, una función de A en B es una relación (una ley) que asigna a cada elemento

Más detalles

2.1 Derivadas Tipo Función Simple Función Compuesta

2.1 Derivadas Tipo Función Simple Función Compuesta Tema 2: Derivadas, Rectas tangentes y Derivabilidad de funciones. 2.1 Derivadas Tipo Función Simple Función Compuesta Constante Identidad Potencial Irracional Exponencial Logarítmica Suma Resta Producto

Más detalles

1 1. [2014] [EXT-A] Dada la función f(x) = x+1 + x

1 1. [2014] [EXT-A] Dada la función f(x) = x+1 + x . [4] [ET-A] Dada la función f() = + +, se pide: +4 a) Determinar el dominio de f y sus asíntotas. b) Calcular f'() y determinar los etremos relativos de f(). c) Calcular f()d 5sen + si

Más detalles

MATE 3031. Dr. Pedro Vásquez UPRM. P. Vásquez (UPRM) Conferencia 1 / 77

MATE 3031. Dr. Pedro Vásquez UPRM. P. Vásquez (UPRM) Conferencia 1 / 77 MATE 3031 Dr. Pedro Vásquez UPRM P. Vásquez (UPRM) Conferencia 1 / 77 P. Vásquez (UPRM) Conferencia 2 / 77 Qué es una función? MATE 3171 En esta parte se recordará la idea de función y su definición formal.

Más detalles

4.2 Tasas de Variación. Sea la función f: Se llama tasa de variación media de la función f en el intervalo [a, b] al cociente:

4.2 Tasas de Variación. Sea la función f: Se llama tasa de variación media de la función f en el intervalo [a, b] al cociente: U.D.4: DERIVADAS 4.1 Ecuaciones de una recta. Pendiente de una recta La pendiente de una recta es una medida de la inclinación de la recta. Es el cociente del crecimiento en vertical entre el crecimiento

Más detalles

SESIÓN N 07 III UNIDAD RELACIONES Y FUNCIONES

SESIÓN N 07 III UNIDAD RELACIONES Y FUNCIONES SESIÓN N 07 III UNIDAD RELACIONES Y FUNCIONES RELACIONES BINARIAS PAR ORDENADO Es un arreglo de dos elementos que tienen un orden determinado donde a es llamada al primera componente y b es llamada la

Más detalles

CONCRECIÓN DE LOS CRITERIOS DE EVALUACIÓN Curso: PRIMERO de BACHILLERATO CIENCIAS Asignatura: MATEMÁTICAS I Profesor: ALFONSO BdV

CONCRECIÓN DE LOS CRITERIOS DE EVALUACIÓN Curso: PRIMERO de BACHILLERATO CIENCIAS Asignatura: MATEMÁTICAS I Profesor: ALFONSO BdV CONCRECIÓN DE LOS CRITERIOS DE EVALUACIÓN Curso: PRIMERO de BACHILLERATO CIENCIAS Asignatura: MATEMÁTICAS I Profesor: ALFONSO BdV 1. Números reales. Aritmética y álgebra 1.1. Operar con fracciones de números

Más detalles

FUNCIONES EXPONENCIAL Y LOGARÍTMICA

FUNCIONES EXPONENCIAL Y LOGARÍTMICA FUNCIONES EXPONENCIAL Y LOGARÍTMICA 1. Crecimiento exponencial. La función exponencial. 1.1 La Función Exponencial. Una función exponencial es una expresión de la forma siguiente:,,. Donde es una constante

Más detalles

1. Estudia la derivabilidad de la función )En qué punto del intervalo (0,ð) la recta tangente a y=tg(x) tiene pendiente 2?.

1. Estudia la derivabilidad de la función )En qué punto del intervalo (0,ð) la recta tangente a y=tg(x) tiene pendiente 2?. ejerciciosyeamenes.com EXAMEN DERIVADAS. Estudia la derivabilidad de la función si f ()= si > 3. )En qué punto del intervalo (0,ð) la recta tangente a y=tg() tiene pendiente?. 4. Ecuación de la recta tangente

Más detalles

Derivada de una función en un punto. Función derivada. Diferencial de una función en un punto. dy = f (x) dx. Derivada de la función inversa

Derivada de una función en un punto. Función derivada. Diferencial de una función en un punto. dy = f (x) dx. Derivada de la función inversa Derivada de una función en un punto Las tres expresiones son equivalentes. En definitiva, la derivada de una función en un punto se obtiene como el límite del cociente incremental: el incremento del valor

Más detalles

Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática ( )

Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática ( ) Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática (00874) UNIDAD N 2 (LIMITES) Profesora: Yuar Matute Diciembre 20 0 Definición Intuitiva de Límites

Más detalles

Tema 7: Derivada de una función

Tema 7: Derivada de una función Tema 7: Derivada de una función Antes de dar la definición de derivada de una función en un punto, vamos a introducir dos ejemplos o motivaciones iniciales que nos van a dar la medida de la importancia

Más detalles

2. Continuidad y derivabilidad. Aplicaciones

2. Continuidad y derivabilidad. Aplicaciones Métodos Matemáticos (Curso 2013 2014) Grado en Óptica y Optometría 7 2. Continuidad y derivabilidad. Aplicaciones Límite de una función en un punto Sea una función f(x) definida en el entorno de un punto

Más detalles

2.2.1 Límites y continuidad

2.2.1 Límites y continuidad . Listas de ejercicios de Cálculo Diferencial. Listas de ejercicios de Cálculo Diferencial.. Límites y continuidad 3. Hallar el dominio de las funciones reales de variable real dadas por: a) f () = b)

Más detalles

2. [2014] [EXT-B] De entre todos los números reales positivos, determina el que sumado con su inverso da suma mínima.

2. [2014] [EXT-B] De entre todos los números reales positivos, determina el que sumado con su inverso da suma mínima. cos() - e + a. [04] [ET-A] Sabiendo que lim 0 sen() es finito, calcula a y el valor del límte.. [04] [ET-B] De entre todos los números reales positivos, determina el que sumado con su inverso da suma mínima..

Más detalles

Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática ( )

Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática ( ) Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática (0081714) UNIDAD N 4 (APLICACIONES DE LA DERIVADA) Profesora: Yulimar Matute Febrero 2012 RECTA

Más detalles

José Vicente Ugarte Susaeta. Profesor de la Universidad Comercial de Deusto

José Vicente Ugarte Susaeta. Profesor de la Universidad Comercial de Deusto MATEMÁTICAS PARA ECONOMÍA Y EMPRESA CÁLCULO DE UNA VARIABLE José Vicente Ugarte Susaeta Profesor de la Universidad Comercial de Deusto Con la colaboración de Miguel Ángel Larrinaga Ojanguren Profesor de

Más detalles

UNIDAD 1 NUMEROS COMPLEJOS

UNIDAD 1 NUMEROS COMPLEJOS UNIDAD 1 NUMEROS COMPLEJOS El conjunto de los números complejos fue creado para poder resolver algunos problemas matemáticos que no tienen solución dentro del conjunto de los números reales. Por ejemplo

Más detalles

FUNCIONES INVERSAS

FUNCIONES INVERSAS Capítulo 5 FUNCIONES INVERSAS 5.. 5..3 En esta sección, los alumnos eplorarán las funciones inversas, es decir, funciones que deshacen las acciones de otras funciones. Los valores de salida de la función

Más detalles

en su construcción sea mínima. Sol: r = 3, h =

en su construcción sea mínima. Sol: r = 3, h = RELACIÓN DE PROBLEMAS ) Encontrar los etremos absolutos de y 6+ definida en [0, ]. Sol. Má en 0 y ; mín -/ en,5. ) Hallar dos números positivos cuya suma sea 0, sabiendo que su producto es máimo. Sol.:

Más detalles

Funciones reales de variable real.

Funciones reales de variable real. CONOCIMIENTOS PREVIOS. Funciones reales de variable real.. Conocimientos previos. Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: Intervalos y sus definiciones básicas.

Más detalles

TEMA 9 DERIVADAS. TÉCNICAS DE DERIVACIÓN 9.1 DERIVADA DE UNA FUNCIÓN EN UN PUNTO

TEMA 9 DERIVADAS. TÉCNICAS DE DERIVACIÓN 9.1 DERIVADA DE UNA FUNCIÓN EN UN PUNTO TEMA 9 DERIVADAS. TÉCNICAS DE DERIVACIÓN MATEMÁTICAS II º Bach TEMA 9 DERIVADAS. TÉCNICAS DE DERIVACIÓN 9. DERIVADA DE UNA FUNCIÓN EN UN PUNTO TASA DE VARIACIÓN MEDIA Definición Se llama tasa de variación

Más detalles

CONTINUIDAD Y DERIVABILIDAD

CONTINUIDAD Y DERIVABILIDAD . Sea la función f ( ) = 6 CONTINUIDAD Y DERIVABILIDAD a. Determine sus puntos de corte con los ejes. b. Calcule sus etremos relativos y su punto de infleión. c. Represente gráficamente la función.. Sea

Más detalles

5.1 DISTINTOS TIPOS DE FUNCIONES LINEALES

5.1 DISTINTOS TIPOS DE FUNCIONES LINEALES Tema 5 : Funciones elementales - Matemáticas B 4º E.S.O. 1 TEMA 5 FUNCIONES ELEMENTALES 5.1 DISTINTOS TIPOS DE FUNCIONES LINEALES 3º 5.1.1 - FUNCIONES DE PROPORCIONALIDAD: y = mx Las funciones de proporcionalidad

Más detalles

DERIV. DE UNA FUNC. EN UN PUNTO

DERIV. DE UNA FUNC. EN UN PUNTO DERIVADA DE UNA FUNCIÓN Se abre aquí el estudio de uno de los conceptos fundamentales del cálculo diferencial: la derivada de una función. En este tema, además de definir tal concepto, se mostrará su significado

Más detalles

CONTINUIDAD Y DERIVABILIDAD 1.- CONTINUIDAD

CONTINUIDAD Y DERIVABILIDAD 1.- CONTINUIDAD CONTINUIDAD Y DERIVABILIDAD Continuidad. Derivabilidad. 1.- CONTINUIDAD 1.1 FUNCIÓN CONTINUA EN UN PUNTO Decimos que f es continua en a si: Lim f( ) = f( a) a Para que una función sea continua en un punto

Más detalles

7.1 Números Racionales: números enteros, propiedades de los números y orden de operaciones. Prof. Kyria A. Pérez

7.1 Números Racionales: números enteros, propiedades de los números y orden de operaciones. Prof. Kyria A. Pérez 7.1 Números Racionales: números enteros, propiedades de los números y orden de operaciones Prof. Kyria A. Pérez Estándares de contenido y expectativas N.SO.7.2.1- Modela la suma, Resta, multiplicación

Más detalles

FUNCIONES. DEFINICIONES: Toda relación de A en B tal que cada valor de la variable independiente (dominio) le corresponde uno sólo un valor de la variable dependiente (rango). Conjunto de pares ordenados

Más detalles

FUNCIONES DE PROPORCIONALIDAD: y = mx. Su pendiente es 0. La recta y = 0 coincide con el eje

FUNCIONES DE PROPORCIONALIDAD: y = mx. Su pendiente es 0. La recta y = 0 coincide con el eje Funciones elementales - Matemáticas B 4º E.S.O. FUNCIONES ELEMENTALES DISTINTOS TIPOS DE FUNCIONES LINEALES FUNCIONES DE PROPORCIONALIDAD: y = mx FUNCIÓN CONSTANTE: y = n Las funciones de proporcionalidad

Más detalles

Cálculo de Derivadas. 2º Bachillerato. Materiales (Editorial SM)

Cálculo de Derivadas. 2º Bachillerato. Materiales (Editorial SM) Cálculo de Derivadas. 2º Bacillerato Materiales Editorial SM Esquema Tasa de variación media en un intervalo Para una unción se deine la tasa de variación media de en un intervalo [a, b], contenido en

Más detalles

TEMA 0 FUNCIONES ***************

TEMA 0 FUNCIONES *************** TEMA 0. Definición y terminología.. Funciones conocidas. 3. Operaciones con funciones. 4. Funciones inversas. FUNCIONES ***************. DEFINICIÓN Y TERMINOLOGÍA.. Definición de función real de variable

Más detalles

Para qué x de ese intervalo alcanza F su valor máximo? Y el valor mínimo?

Para qué x de ese intervalo alcanza F su valor máximo? Y el valor mínimo? Análisis I (A y B) febrero9 Consideremos f() = sen() arctg( 3 Calcular el límite de f cuando tiende a Sea la sucesión ) a n = cosn Es convergente? Determinar el límite, si eiste, de la sucesión {f(a n

Más detalles

IES PADRE SUÁREZ MATEMÁTICAS II DEPARTAMENTO DE MATEMÁTICAS

IES PADRE SUÁREZ MATEMÁTICAS II DEPARTAMENTO DE MATEMÁTICAS Ejercicios de continuidad y derivabilidad. Selectividad de 008, 009, 00 y 0 Anális 008 Ejercicio.- Sean f : R R y g : R R las funciones definidas por f() = + a + b y g() = c e -(+). Se sabe que las gráficas

Más detalles