3º ESO TEMA 7.- FUNCIONES Y GRÁFICAS. Página web del profesor: Profesor: Rafael Núñez Nogales


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "3º ESO TEMA 7.- FUNCIONES Y GRÁFICAS. Página web del profesor: Profesor: Rafael Núñez Nogales"

Transcripción

1 3º ESO TEMA 7.- FUNCIONES Y GRÁFICAS Página web del profesor: 1.-LAS FUNCIONES Y SUS GRÁFICAS. (Págs: 13 y 133) Qué es una función? Esta gráfica representa la distancia al punto de salida, en un viaje en coche, en función del tiempo Por ejemplo, a los 40 min, la distancia es: 50 km Si representamos por x = tiempo y = distancia vemos que a cada valor de la x (el tiempo) corresponde un único valor de la y (la distancia) Esta gráfica representa a una función. Definición Una función es una forma de hacerle corresponder a un valor de xun únicovalor de y

2 1..- Elementos de una función y = distancia x = tiempo Variable independiente (se designa con la letra x) Es la que se representa en el eje horizontal, llamado eje X o eje de abscisas Variable dependiente (se designa con la letra y) Es la que se representa en el eje vertical, llamado eje Y o eje de ordenadas Dominio de definición Es el conjunto formado por todos los valores de la x para los que existe la función En este ejemplo, el dominio lo forman todos los números de 0 a 170 Recorrido Es el conjunto formado por todos los valores de la y para los que existe la función En este ejemplo, el recorrido lo forman todos los números de 0 a 85 Ejercicio 1 La siguiente gráfica representa la variación de la temperatura de un enfermo de un hospital a lo largo de un día a) Cuál es la variable independiente? hora del día = x b) Cuál es la variable dependiente? temperatura = y c) A qué hora estaba peor? A las 0 h d) En qué momento la temperatura fue anormalmente baja? A las 14 h e) Cuál es el dominio de definición? 0h 4 h f) Cuál es el recorrido? 35ºC 40 ºC g) Por qué aparece una línea quebrada entre 0 y 35? No nos interesan temperaturas menores de 35 ºC

3 Ejercicio Asocia cada enunciado con su gráfica correspondiente: (A) Pedro sale de su casa al instituto. Por el camino, se da cuenta que ha olvidado el libro de matemáticas. Vuelve a por el libro y luego se va al instituto sin pararse. A esta situación le corresponde la gráfica: I I (B) Un teleférico sube hasta una pista. Allí para 10 minutos y baja de nuevo hasta la base. A esta situación le corresponde la gráfica: I I I (C) María sale de su casa hacía el gimnasio. Por el camino se encuentra a Luis y se para a hablar con él. Después sigue andando hasta el gimnasio A esta situación le corresponde la gráfica: I Ejercicio 3 Construye una gráfica que se ajuste al siguiente enunciado. Esta mañana, Pablo salió a hacer una ruta en bicicleta. - Tardó media hora en llegar al primer punto de descanso, que estaba a 5 km de su casa. - Estuvo parado durante 30 minutos. - Tardó 1 hora en recorrer los siguientes 15 km - Tardó otra hora en recorrer los 10 km que faltaban para llegar a su destino. a) Qué escala estamos usando en cada eje? km Eje X: Eje Y: 1 cuadrito = 0,5 h 1 cuadrito = 5 km horas b) Cuánto tiempo tardó en hacer la ruta? 3 h c) Cuántos kilómetros recorrió? 50 km d) Qué distancia recorrió las dos últimas horas? 5 km e) Qué velocidad media llevó las dos últimas horas? v = 5 km: h = 1,5 km/h

4 Ejercicio 4 La cantidad que hay que tomar de un cierto medicamento depende del peso del paciente. Se deben tomar 0,30 g por cada kg de peso del paciente y, cómo máximo, se pueden tomar 15 g a) Cuántos gramos debe tomar una persona que pese 45 kg? 0, = 13,5 g b) A partir de qué peso se toma la dosis máxima? 0,30x = 15 x = 15 : 0,30 = 50 kg c) Completa la siguiente tabla X = peso (en kg) Y = dosis (en gr) d) Representa la función x = peso del paciente, y = dosis adecuada Importe (en ) Ejercicio 5 Cuando una variable toma un número finito de valores, es decir, toma solo unos pocos valores, diremos que la variable es discreta Nº de helados La gráfica de arriba muestra el importe a pagar según el número de helados que compres (máximo siete helados), motivo de una oferta especial por el 5 aniversario de una heladería. a) Cuánto cuestan 4 helados? 3 b) Cuántos helados puedes comprar con 5? 7 helados d) Cuál es el dominio de definición? e) Cuál es el recorrido? c) Tiene sentido unir los puntos de la gráfica? No, porque el número de helados es una variable discreta { 1,, 3, 4, 5, 6, 7 } { 1,, 3, 4, 5 }

5 Ejercicio 6 De las siguientes gráficas, cuáles corresponden a funciones y cuáles no? SI Distancia recorrida NO SI Tiempo SI Velocidad SI Distancia al punto de partida NO Tiempo Tiempo APARTADO 1: Ejercicios propuestos Del libro: Pág. 13: El 1 Pág. 137: El 1 Final del tema: El 4, 11 y Y (nº de asistentes) 1.- En un pueblo se juegan 5 partidos de fútbol. La siguiente gráfica representa la asistencia de público a cada partido. A) Cuántos asistentes hubo en el partido 3? X (nº de partido) B) En qué partido hubo 100 asistentes? C) Tiene sentido unir los puntos de la gráfica? D) Cómo es la variable de esta función? E) Cuál es el dominio de definición? F) Cuál es el recorrido?.- Calcula el dominio y recorrido de las siguientes gráficas: 3.- Indica si la siguiente gráfica corresponde o no a una función

6 .-VARIACIONES DE UNA FUNCIÓN. Págs: 134 y 135) Una función es creciente si su gráfica es ascendente..1.- Crecimiento y decrecimiento Una función es decreciente si su gráfica es descendente. Al aumentar los valores de la x, aumentan los de la y Al aumentar los valores de la x, disminuyen los de la y Una función es constante si su gráfica no es ascendente ni descendente...- Variaciones por tramos En el intervalo 0-3 es creciente En el intervalo 3-4 es decreciente En el intervalo 4-5 es constante En el intervalo 5-8 es creciente

7 .3.- Máximos y mínimos Una función tiene un máximo en x 0, si a la izquierda de x 0 es creciente y a la derecha decreciente Una función tiene un mínimo en x 0, si a la izquierda de x 0 es decreciente y a la derecha creciente Ejercicio 1 La siguiente gráfica representa la distancia al instituto en un viaje en autobús a) En qué intervalo de tiempo va aumentando la distancia al instituto? 0 h h b) Cómo es la función en ese intervalo? creciente c) Indica los intervalos donde la función es constante d) En los intervalos 6-7 y 8-9 la función es e) Calcula la velocidad media del autobús en la ida f) Calcula la velocidad media del autobús en la vuelta g) Cuánto tiempo, en total, estuvo el autobús parado h 6 h y 7 h 8 h decreciente 140 km: h = 70 km/h 140 km: 3 h = 46,7 km/h 5 h h) En qué intervalo de tiempo estaban a más de 80 km del instituto? 1 h 7 h

8 Ejercicio Un grupo de estudiantes de Iznalloz hace una excursión a Sierra Nevada que está a 75 km del instituto tardando hora y media en llegar. Están allí tres horas y media y regresan tardando igual en la ida que en la vuelta Dibuja la gráfica tiempo-distancia al instituto del autobús usando escalas adecuadas Ejercicio 3 Dibuja la gráfica de una función definida en el intervalo 0-15 que tenga un máximo en el punto (4,7) y un mínimo en el punto (10,3). La función es decreciente en el tramo: 4-10

9 Ejercicio 4 Las siguientes gráficas describen los pesos de dos amigos. Antonio e Isabel a) Qué escala se está usando en cada eje? b) Cuándo pesan lo mismo? c) En qué tramos Isabel pesa más que Antonio? Eje X: Un cuadrito corresponde a Eje Y: Un cuadrito corresponde a d) A partir de qué edad, el peso de Isabel va disminuyendo? A partir de 18 años, aproximadamente e) Cuándo Antonio pesa 3 kg, cuánto pesa Isabel? Ejercicios propuestos Apartado Pág. 135: El 1 Final del tema: El 1,,3,5 y 10 Autoevaluación: El 1 1 año 5 kg Aproximadamente, a los 3 años, 11 años y 16 años De 0-3 (años) y de (años) 0 kg Qué edad tienen? 9 años 3.-TENDENCIAS DE UNA FUNCIÓN. Pág: 136 Una función tiene tendencia hacía un valor cuando, al tomar valores de x cada vez mayores, los valores de la y se aproximan cada vez más a ese valor Esta función tiende hacía el valor Una función es periódica si su comportamiento se va repitiendo cada cierto intervalo. La longitud del intervalo se llama periodo de la función Esta función es periódica de periodo 4

10 Ejercicio 1 Los padres de Roberto miran a su hijo dar vueltas en una noria. En cada vuelta, que dura 40 segundos, Roberto se acerca hasta m del suelo y se aleja hasta una distancia máxima de 16 m. En el momento inicial está abajo (a m del suelo). Dibuja la gráfica tiempo-distancia en un intervalo de tiempo correspondiente a 3 vueltas a) Es una función periódica? SI b) En caso afirmativo, indica cuál es el periodo 40 seg c) Cuál es el recorrido de la función? El intervalo [, 16] d) Indica un punto que corresponda a un máximo de la función Por ejemplo, (0,16) Ejercicio Un tiovivo, que está parado, acelera durante 4 min hasta alcanzar una velocidad de 10 km/h. Permanece a esta velocidad durante 6 minutos y decelera durante 5 min hasta parar. Tras permanecer 5 min parado, comienza otra vuelta. a) Completa la siguiente tabla: X = tiempo (minutos) Y = velocidad (km/h) b) Realiza la gráfica en un periodo de 1 hora e indica cuál es el periodo de la función Periodo : 0 min

11 Ejercicio 3 Un laboratorio ha analizado la concentración de glucosa en la sangre de un paciente y, con los resultados obtenidos, ha emitido esta gráfica. a) Qué cantidad de glucosa había al principio? 30 mg/cm 3 b) Cuánto tiempo, aproximadamente, estuvo la glucosa entre 60 y 90 mg/cm 3? 3 horas c) Hacia qué valor tiende a estabilizarse la glucosa con el paso del tiempo? Ejercicios propuestos Apartado 3 Pág. 136: El 1 y Final del tema: El 6,7,8,9,15 y 5 Autoevaluación: El y mg/cm DISCONTINUIDADES. CONTINUIDAD. Pág: 137 Una función es continua cuando su gráfica no tiene ninguna rotura y, por tanto, se puede dibujar de un solo trazo. Esta es una función continua en todo su dominio Esta función es discontinua en x = 0, x = 3 Podemos decir que es continua sólo en los tramos: 1) Desde menos infinito hasta el 0 ) En el tramo 0-3 3) Desde el 3 hasta el infinito

12 Un aparcamiento público es gratuito la primera hora. La ª hora o fracción hay que pagar 1,50. Y así, las sucesivas horas. Nos dicen que podemos estar un máximo de 4 horas. a) Completa la siguiente tabla: X = tiempo (horas) Y = cantidad a pagar ( ) Ejercicio 1 b) Dibuja la gráfica tiempo-cantidad a pagar ,5 3 4,5 3 4 a) Es una función continua? NO b) En caso negativo, indica los puntos de discontinuidad x = 1, x =, x = 3 c) Si estoy 3 h y 1 minuto, cuánto tengo que pagar? 4,50 d) Cómo es la función en cada uno de los tramos: 0-1, 1-, 3-4? constante (A) Ejercicio Averigua si las siguientes gráficas corresponden a funciones continuas. En caso de que sean discontinuas, indica los puntos de discontinuidad (B) Discontinua en x = -3, x = 3 (C) Y X -5 Discontinua en x = -, x = 4 Continua Ejercicios propuestos- Apartado 4 : Pág. 137: El 1 y Final del tema: El 13 y 4

13 5.- EXPRESIÓN ANALÍTICA DE UNA FUNCIÓN. Págs: 138 y 139 La expresión analítica de una función es una ecuación o fórmula que relaciona la x con la y Por ejemplo, la ecuación y = x es la expresión analítica o fórmula que le hace corresponder a cada valor del lado x de un cuadrado su área, y. Ejercicio 1 Tomemos todos los rectángulos de 16 cm de superficie. Sea x = base del rectángulo y = altura del rectángulo. Haz una tabla de valores, halla la expresión analítica y representa la gráfica de la función que relaciona x con y x = base (cm) y = altura (cm) Expresión analítica: y x x.y= 16 y = 16 x Ejercicio Sea la función dada por la fórmula y = 6x 3x 6 a) Calcula el valor de y para x = - b) Existe el valor de y para x = y = 6. ( ) 3.( ) 6 = = 1 1 y = = = 1 0 y = 1 No existe, porque no se puede dividir entre 0 Ejercicio 3 Averigua si hay algún valor de x para el que no se pueda calcular y. Después indica cuál es el dominio de definición 5x + 3 y = y = a) b) x x + 10 Para x = 0 no se puede calcular la y El dominio está formado por todos los números excepto el 0 Dom(f) = R { 0 } x + 10 = 0 x = -10 x = -5 Para x = -5 no se puede calcular la y El dominio está formado por todos los números excepto el -5 Dom(f) = R { 5 }

14 Ejercicio 4 Sin dibujar la gráfica, calcula los puntos de corte con los ejes de coordenadas de las siguientes funciones: a) y = 3x Punto de corte con el eje X Punto de corte con el eje Y y = 0 3x = 0 3x = x = 3 El punto de corte es P( 3, 0) x = 0 y = 3. 0 y = - El punto de corte es Q(0, -) Puntos de corte con el eje X b) y = x 4x + 3 y = 0 x 4x + 3 = 0 D = b 4ac = (-4) = 16 1 = 4 b ± b 4ac x = = ( 4) ± 4 a.1 x = 4 ± x = 3 x = 1 Los puntos de corte son P(3, 0), Q(1, 0) Punto de corte con el eje Y x = 0 y = y = 3 El punto de corte es R(0, 3) APARTADO 5: Ejercicios propuestos Del libro: Final del tema: El Sea la función dada por la fórmula y = 90 5x 0 a) Calcula el valor de y para x = - b) Existe el valor de y para x = 4.- Averigua si hay algún valor de x para el que no se pueda calcular y. Después, indica cuál es el dominio de definición 1 5x 7 a) y = b) y = x 3x Sin dibujar la gráfica, calcula los puntos de corte con los ejes de coordenadas de las siguientes funciones: a) y = 4 5x b) y = x 5x + 4 c) y = -x x d) y = 3x x e) y = 1-3x

TEMA 7. FUNCIONES. - Variables dependiente e independiente.

TEMA 7. FUNCIONES. - Variables dependiente e independiente. TEMA 7. FUNCIONES 7.1. Definiciones. - Función. - Variables dependiente e independiente. - Imagen y antiimagen. - Interpretación de gráficas. - Dominio y recorrido. 7.2. Propiedades de las funciones. -

Más detalles

INTERPRETACIÓN DE FUNCIONES

INTERPRETACIÓN DE FUNCIONES INTERPRETACIÓN DE FUNCIONES 1º) Se va a organizar una excursión y el precio por persona va a depender del número de personas que vayan a dicha excursión. El número máximo de plazas es de 60, y el mínimo,

Más detalles

Características globales de las funciones

Características globales de las funciones Características globales de las funciones. Funciones Considera los rectángulos con un lado de doble longitud que el otro. Expresa el perímetro y el área en función del lado menor. P = (x + x) = x A = x

Más detalles

FUNCIONES CON DESCARTES. HOJA DE TRABAJO

FUNCIONES CON DESCARTES. HOJA DE TRABAJO FUNCIONES CON DESCARTES. HOJA DE TRABAJO Escena 1 a) Inventa un texto que ilustre de forma clara el gráfico. b) Cuál es la variable independiente y en qué unidad se mide? c) Cuál es la variable dependiente

Más detalles

I.E.S. HAYGÓN CURSO 2011/20121 NOMBRE Y APELLIDOS FECHA TEMA 7: FUNCIONES

I.E.S. HAYGÓN CURSO 2011/20121 NOMBRE Y APELLIDOS FECHA TEMA 7: FUNCIONES NOMBRE Y APELLIDOS FECHA TEMA 7: FUNCIONES 1. La siguiente gráfica representa una excursión en autobús de un grupo de estudiantes, reflejando el tiempo (en horas) y la distancia al instituto (en kilómetros):

Más detalles

Interpretación de gráficas 1

Interpretación de gráficas 1 Interpretación de gráficas 1 Dos ejemplos sencillos. 1. El precio de un bolígrafo en la papelería cercana es de 0,30. Calcula y escribe en la tabla siguiente el precio de los bolígrafos que se indican.

Más detalles

Completa esta parábola y señala sus elementos y sus propiedades. 1 X. El dominio de la función es todos los números reales:.

Completa esta parábola y señala sus elementos y sus propiedades. 1 X. El dominio de la función es todos los números reales:. Representa la función que relaciona el área de un triángulo rectángulo isósceles la longitud del cateto. a) Cuál es la variable dependiente? b) la variable independiente? = a) La variable independiente

Más detalles

7Soluciones a los ejercicios y problemas PÁGINA 152

7Soluciones a los ejercicios y problemas PÁGINA 152 PÁGINA 5 Pág. P RACTICA Interpretación de gráficas En la gráfica siguiente viene representado el porcentaje de fumadores en España en los últimos años (parte roja), así como la previsión de cómo se supone

Más detalles

MATEMÁTICA: TRABAJO PRÁCTICO 2. Funciones. 1) Carlos está enfermo. Veamos la gráfica de la evolución de su temperatura.

MATEMÁTICA: TRABAJO PRÁCTICO 2. Funciones. 1) Carlos está enfermo. Veamos la gráfica de la evolución de su temperatura. ILSE-2º Año- MATEMÁTICA: TRABAJO PRÁCTICO 2 Funciones 1) Carlos está enfermo. Veamos la gráfica de la evolución de su temperatura. a) Cuántos días ha estado enfermo el paciente? (Se considera normal una

Más detalles

FUNCIONES y = f(x) ESO3

FUNCIONES y = f(x) ESO3 Las correspondencias entre conjunto de valores o magnitudes se pueden expresar de varias formas: con un enunciado, con una tabla, con una gráfica, o con una fórmula o expresión algebraica o analítica.

Más detalles

EJERCICIOS RECUPERACIÓN MATEMÁTICAS 2º ESO

EJERCICIOS RECUPERACIÓN MATEMÁTICAS 2º ESO NÚMEROS ENTEROS Ejercicio nº 1: EJERCICIOS RECUPERACIÓN MATEMÁTICAS º ESO a Calcula todos los divisores de 46. b Escribe cinco múltiplos consecutivos de 16 comprendidos entre 7 y 10. c Cuándo un número

Más detalles

BLOQUE III Funciones y gráficas

BLOQUE III Funciones y gráficas BLOQUE III Funciones y gráficas. Características globales de las funciones 9. Rectas e hipérbolas 0. Función cuadrática Características globales de las funciones. Funciones Considera los rectángulos con

Más detalles

MATEMÁTICAS 2º DE ESO

MATEMÁTICAS 2º DE ESO MATEMÁTICAS 2º DE ESO LOE TEMA VII: FUNCIONES Y GRÁFICAS Coordenadas cartesianas. Concepto de función. Tabla y ecuación. Representación gráfica de una función. Estudio gráfico de una función. o Continuidad

Más detalles

INTERPRETACIÓN DE GRÁFICAS

INTERPRETACIÓN DE GRÁFICAS INTERPRETACIÓN DE GRÁFICAS Ejercicio nº 1.- La siguiente gráfica representa una excursión en autobús de un grupo de estudiantes, reflejando el tiempo (en horas) y la distancia al instituto (en kilómetros):

Más detalles

Expresa, de forma algebraica y mediante una tabla de valores, la función que asigna a cada número su cubo menos dos veces su cuadrado.

Expresa, de forma algebraica y mediante una tabla de valores, la función que asigna a cada número su cubo menos dos veces su cuadrado. Funciones EJERCICIOS 00 Expresa, de forma algebraica y mediante una tabla de valores, la función que asigna a cada número su cubo menos dos veces su cuadrado. Expresión algebraica: y = x 3 x o f(x) = x

Más detalles

9. Rectas e hipérbolas

9. Rectas e hipérbolas 08 SOLUCIONARIO 9. Rectas e hipérbolas Representa gráficamente las siguientes ecuaciones. Di cuáles son funciones y clasifícalas: 8. y =. FUNCIONES CONSTANTES LINEALES PIENSA CALCULA y = Halla mentalmente

Más detalles

Definición matemática de Relación y de Función

Definición matemática de Relación y de Función Fecha: 05/0 Versión: DOCENTE: ANTONIO ELI CASTILLA Definición matemática de Relación de Función En matemática, Relación es la correspondencia de un primer conjunto, llamado Dominio, con un segundo conjunto,

Más detalles

ECUACIONES E INECUACIONES

ECUACIONES E INECUACIONES ECUACIONES E INECUACIONES 1.- Escribe las expresiones algebraicas que representan los siguientes enunciados: a) Número de ruedas necesarias para fabricar x coches. b) Número de céntimos para cambiar x

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. Página 5 PRACTICA Interpretación de gráficas Se suelta un globo que se eleva y, al alcanzar cierta altura, estalla. La siguiente gráfica representa la altura, con el paso del tiempo, a la que se encuentra

Más detalles

Funciones. Rectas y parábolas

Funciones. Rectas y parábolas 0 Funciones. Rectas y parábolas. Funciones Dado el rectángulo de la figura, calcula: el perímetro. el área. P I E N S A C A L C U L A Perímetro = ( + ) = 6 Área = = Indica cuál de las siguientes gráficas

Más detalles

5 2,7; ; ; 3; 3,2

5 2,7; ; ; 3; 3,2 Actividades de recuperación para septiembre 3º ESO, MATEMÁTICAS La recuperación de la asignatura consta de dos partes: Entregar los siguientes ejercicios resueltos correctamente. Aprobar el examen de recuperación.

Más detalles

El plano cartesiano y Gráficas de ecuaciones. Copyright 2013, 2009, 2006 Pearson Education, Inc. 1

El plano cartesiano y Gráficas de ecuaciones. Copyright 2013, 2009, 2006 Pearson Education, Inc. 1 El plano cartesiano y Gráficas de ecuaciones Copyright 2013, 2009, 2006 Pearson Education, Inc. 1 Sistema de coordenadas rectangulares En el cap 2 presentamos la recta numérica real que resulta al establecer

Más detalles

3ª Parte: Funciones y sus gráficas

3ª Parte: Funciones y sus gráficas 3ª Parte: Funciones y sus gráficas Relaciones funcionales. Estudio gráfico y algebraico de funciones 1. Interpretación de gráficas 1. Un médico dispone de 1hora diaria para consulta. El tiempo que podría,

Más detalles

Las únicas funciones cuyas gráficas son rectas son las siguientes:

Las únicas funciones cuyas gráficas son rectas son las siguientes: Funciones, 3º ESO () RECTAS Las únicas funciones cuyas gráficas son rectas son las siguientes: - Lineales, de fórmula y mx. Las gráficas de estas funciones pasan por el origen de coordenadas. m es la pendiente

Más detalles

FUNCIONES ELEMENTALES

FUNCIONES ELEMENTALES 0 FUNCIONES ELEMENTALES Página PARA EMPEZAR, REFLEIONA RESUELVE Problema Las siguientes gráficas corresponden a funciones, algunas de las cuales conoces y otras no. En cualquier caso, vas a trabajar con

Más detalles

La variable independiente x es aquella cuyo valor se fija previamente. La variable dependiente y es aquella cuyo valor se deduce a partir de x.

La variable independiente x es aquella cuyo valor se fija previamente. La variable dependiente y es aquella cuyo valor se deduce a partir de x. Bloque 8. FUNCIONES. (En el libro Temas 10, 11 y 12, páginas 179, 197 y 211) 1. Definiciones: función, variables, ecuación, tabla y gráfica. 2. Características o propiedades de una función: 2.1. Dominio

Más detalles

1. GRÁFICAS. Página 1

1. GRÁFICAS. Página 1 1. GRÁFICAS Página 1 Lectura, construcción e interpretación de gráficas Características globales y locales de las gráficas Página 2 1. LECTURA, CONSTRUCCIÓN E INTERPRETACIÓN DE GRÁFICAS. ETAPA CICLISTA

Más detalles

6 Funciones. 1. Estudio gráfico de una función. Piensa y calcula. Aplica la teoría

6 Funciones. 1. Estudio gráfico de una función. Piensa y calcula. Aplica la teoría 6 Funciones 1. Estudio gráfico de una función Piensa y calcula Indica cuál de las siguientes funciones es polinómica y cuál racional: 2 + 5 f() = f() = 3 5 2 + 6 4 2 4 Racional. Polinómica. Aplica la teoría

Más detalles

Aplicaciones de las derivadas

Aplicaciones de las derivadas 11 Aplicaciones de las derivadas 1. Representación de funciones polinómicas Piensa y calcula Calcula mentalmente: a) lím ( 3 3) b) lím ( 3 3) [email protected] a) + @ b) @ @ Aplica la teoría Representa las siguientes

Más detalles

Cuaderno de Actividades 4º ESO

Cuaderno de Actividades 4º ESO Cuaderno de Actividades 4º ESO Relaciones funcionales. Estudio gráfico y algebraico de funciones 1. Interpretación de gráficas 1. Un médico dispone de 1hora diaria para consulta. El tiempo que podría,

Más detalles

PÁGINA 131 PARA EMPEZAR. Una función para las oscilaciones de un péndulo

PÁGINA 131 PARA EMPEZAR. Una función para las oscilaciones de un péndulo Soluciones a las actividades de cada epígrafe PÁGINA 131 Pág. 1 PARA EMPEZAR Una función para las oscilaciones de un péndulo Representa en tu cuaderno las observaciones, en una cuadrícula como la que aquí

Más detalles

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL TEMA. FUNCIONES REALES DE VARIABLE REAL.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL . FUNCIONES REALES DE VARIABLE REAL.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL.5.1. DOMINIO, CORTES CON LOS

Más detalles

Cálculo de derivadas

Cálculo de derivadas 0 Cálculo de derivadas. La derivada Piensa y calcula La gráfica f() representa el espacio que recorre un coche en función del tiempo. Calcula mentalmente: a) la pendiente de la recta secante, r, que pasa

Más detalles

Departamento de Matemáticas. Nombre:.Grupo:..

Departamento de Matemáticas. Nombre:.Grupo:.. I.E.S. Mar Mediterráneo Matemáticas º E.S.O e) 2 [5 (7 2)] f) 22 - [5 - (8 - )] - 6 g) (-5) 2 - (-2) + (-) 6 h) 8 0 : 5 + 6 : 2 i) 5 : [2 + (2-7) + 5] j) 5 (8 - ) (2-7) 5 ( - 6) k) + 6 : 9 50 : [2 + (7

Más detalles

1. y = 3x 5-4x y = x+ln x 3. y = 2x 2 -e 2 4. y = xe x 5. y = x x 6. y = x+2 x-2

1. y = 3x 5-4x y = x+ln x 3. y = 2x 2 -e 2 4. y = xe x 5. y = x x 6. y = x+2 x-2 Colección A.. Calcula la derivada de las siguientes funciones:. y = 5-4 -4. y = +ln. y = -e 4. y = e 5. y =. y = + 7. y = ln 8. y = e + 9. y = (+) 0. y =. y = e -. y = (-)e - e. y = - 4. y = ln 5. y =

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES REPRESENTACIÓN DE FUNCIONES Página 5 REFLEXIONA Y RESUELVE Descripción de una gráfica Copia en tu cuaderno los datos encuadrados en rojo. A partir de ellos, y sin mirar la gráfica que aparece al principio,

Más detalles

f: D IR IR x f(x) v. indep. v. dependiente, imagen de x mediante f, y = f(x). A x se le llama antiimagen de y por f, y se denota por x = f -1 (y).

f: D IR IR x f(x) v. indep. v. dependiente, imagen de x mediante f, y = f(x). A x se le llama antiimagen de y por f, y se denota por x = f -1 (y). TEMA 8: FUNCIONES. 8. Función real de variable real. 8. Dominio de una función. 8.3 Características de una función: signo, monotonía, acotación, simetría y periodicidad. 8.4 Operaciones con funciones:

Más detalles

FUNCIONES CUADRÁTICAS

FUNCIONES CUADRÁTICAS FUNCIONES CUADRÁTICAS A la función polinómica de segundo grado f(x) = ax 2 + bx + c, siendo a, b, c, números reales y a 0 se la denomina función cuadrática. Dominio de una función cuadrática es el conjunto

Más detalles

1.- CONCEPTO DE FUNCIÓN

1.- CONCEPTO DE FUNCIÓN .- CONCEPTO DE FUNCIÓN Actividades del alumno/a Explica porqué la siguiente gráfica no corresponde a una función: Porque a un valor de x, por ejemplo x =, le corresponde más de un valor de y. .- CONCEPTO

Más detalles

PENDIENTE MEDIDA DE LA INCLINACIÓN

PENDIENTE MEDIDA DE LA INCLINACIÓN Capítulo 2 PENDIENTE MEDIDA DE LA INCLINACIÓN 2.1.2 2.1.4 Los alumnos utilizaron la ecuación = m + b para graficar rectas describir patrones en los cursos anteriores. La Lección 2.1.1 es un repaso. Cuando

Más detalles

EJERCICIOS PROPUESTOS

EJERCICIOS PROPUESTOS . FUNCINES EJERCICIS PRPUESTS. Un kilogramo de azúcar cuesta,0 euros. Completa la siguiente tabla que relaciona las magnitudes número de kilogramos y precio en euros. N.º de kilogramos 5 0 0 Precio,0 5,50..3

Más detalles

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL. PRIMERA EVALUACIÓN. ANÁLISIS

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL. PRIMERA EVALUACIÓN. ANÁLISIS Eamen Global Análisis Matemáticas II Curso 010-011 I E S ATENEA SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL PRIMERA EVALUACIÓN ANÁLISIS Curso 010-011 1-I-011 MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES

Más detalles

CUADERNILLO RECUPERACIÓN PENDIENTES CURSO 2016/2017 MATEMÁTICAS 2º E.S.O.

CUADERNILLO RECUPERACIÓN PENDIENTES CURSO 2016/2017 MATEMÁTICAS 2º E.S.O. CUADERNILLO RECUPERACIÓN PENDIENTES CURSO 016/017 MATEMÁTICAS º E.S.O. 1ª EVALUACIÓN Tema 1: Números enteros. Divisibilidad. Tema : Fracciones. Tema : Números decimales. Tema 4: Sistema sexagesimal. Unidad

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. 1 PÁGINA 52 EJERCICIOS Sistema de numeración decimal 1 Escribe con cifras: a) Trece unidades y ocho milésimas 13,008 b) Cuarenta y dos cienmilésimas 0,00042 c) Trece millonésimas 0,000013 2 Expresa

Más detalles

Colegio Portocarrero. Curso Departamento de matemáticas. Análisis. (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas)

Colegio Portocarrero. Curso Departamento de matemáticas. Análisis. (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas) Análisis (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas) Problema 1: Sea la función Determina: a) El dominio de definición. b) Las asíntotas si existen. c) El o los intervalos de

Más detalles

1.- EL MOVIMIENTO. Ejercicios

1.- EL MOVIMIENTO. Ejercicios Ejercicios 1.- EL MOVIMIENTO 1.- En la siguiente figura se representa la posición de un móvil en distintos instantes. Recoge en una tabla la posición y el tiempo y determina en cada caso el espacio recorrido

Más detalles

Función de proporcionalidad directa

Función de proporcionalidad directa Gráficos de proporcionalidad Resultados de Aprendizaje: Generar gráficos a partir de tablas de datos Calcular constantes de proporcionalidad Diseñar gráficos que representan relaciones proporcionales Síntesis

Más detalles

4. Escribe la fracción generatriz e indica de que tipo es cada número decimal. a. 7. b. 0.16

4. Escribe la fracción generatriz e indica de que tipo es cada número decimal. a. 7. b. 0.16 REPASO NÚMEROS REALES, POTENCIAS Y RAÍCES 3ºESO Alumno/a : 1. Dibuja un diagrama que exprese las relaciones existentes entre cada uno de los conjuntos numéricos. Indica el conjunto numérico más pequeño

Más detalles

TEMA 4 FUNCIONES ELEMENTALES I

TEMA 4 FUNCIONES ELEMENTALES I Tema 4 Funciones elementales I Ejercicios resueltos Matemáticas B 4º ESO 1 TEMA 4 FUNCIONES ELEMENTALES I DEFINICIÓN DE FUNCIÓN EJERCICIO 1 : Indica cuáles de las siguientes representaciones corresponden

Más detalles

PROBLEMAS DE CINEMÁTICA. 4º ESO

PROBLEMAS DE CINEMÁTICA. 4º ESO Velocidad (km/h) Espacio(km) PROBLEMAS DE CINEMÁTICA. 4º ESO 1. Ordena de mayor a menor las siguientes cantidades: 12 km/h; 3 5 m/s; 0 19 km/min 3 5 m/s 1km/1000 m 3600 s/1h = 12 6 m/s 0 19 km/min 60 min/1h

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 004 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,

Más detalles

APELLIDOS Y NOMBRE:...

APELLIDOS Y NOMBRE:... 1º BACHILLERATO Fecha: 6-09-011 PRUEBA INICIAL APELLIDOS Y NOMBRE:... NORMAS El eamen se realizará con tinta de un solo color: azul ó negro No se puede usar corrector Se valorará potivamente: ortografía,

Más detalles

CENTRO REGIONAL UNIVERSITARIO BARILOCHE TALLER DE MATEMATICA INGRESO 2016 LIC. ENFERMERÍA PRACTICO UNIDAD 3

CENTRO REGIONAL UNIVERSITARIO BARILOCHE TALLER DE MATEMATICA INGRESO 2016 LIC. ENFERMERÍA PRACTICO UNIDAD 3 PRACTICO UNIDAD 3 Nota: Los ejercicios propuestos en los prácticos deben servirle para afianzar y practicar temas. Si nota que algunos ejercicios ya los sabe hacer bien, continúe con otros que le impliquen

Más detalles

FUNCIONES ELEMENTALES

FUNCIONES ELEMENTALES FUNCIONES ELEMENTALES Página 05 REFLEIONA RESUELVE A través de una lupa Mirando un objeto pequeño (un capuchón de bolígrafo, por ejemplo) a través de una lupa situada a 0 cm, este se ve notablemente ampliado.

Más detalles

PROBLEMAS DE REPASO. Solución: Si llamamos x e y a las longitudes de cada uno de los catetos, sabemos que: x 2 y 2 1 y 2 1 x 2 El volumen del cono es:

PROBLEMAS DE REPASO. Solución: Si llamamos x e y a las longitudes de cada uno de los catetos, sabemos que: x 2 y 2 1 y 2 1 x 2 El volumen del cono es: PROBLEMAS DE REPASO 1. La hipotenusa de un triángulo rectángulo mide 1 dm. Hacemos girar el triángulo alrededor de uno de sus catetos. Determina la longitud de los catetos de forma que el cono engendrado

Más detalles

Materia: Matemática de Tercer Año Tema: Pendiente

Materia: Matemática de Tercer Año Tema: Pendiente Materia: Matemática de Tercer Año Tema: Pendiente Suponga que tiene un avión de juguete sobre el despegue, que se eleva 5 pies por cada 6 metros que recorre a lo largo de la horizontal. Cuál sería la pendiente

Más detalles

Resolución de exámenes. NOTA: La opción resaltada en naranja es la opción correcta.

Resolución de exámenes. NOTA: La opción resaltada en naranja es la opción correcta. Resolución de exámenes NOTA: La opción resaltada en naranja es la opción correcta. Geometría Ejercicio 1: La suma de los ángulos internos de un cuadrilátero vale: A. Depende el cuadrilátero B. 90 C. 360

Más detalles

UNIDAD 2: Variación Directamente Proporcional y Funciones Lineales.

UNIDAD 2: Variación Directamente Proporcional y Funciones Lineales. UNIDAD 2: Variación Directamente Proporcional y Funciones Lineales. GRADO DE DIFICULTAD BAJO 1. Dos variables son directamente proporcionales si: A) Al aumentar un valor de una de ellas el valor correspondiente

Más detalles

INTEGRAL DEFINIDA. APLICACIONES

INTEGRAL DEFINIDA. APLICACIONES COLEGIO SAN ALBERTO MAGNO MATEMÁTICAS II INTEGRAL DEFINIDA. APLICACIONES. 008 MODELO OPCIÓN A. Ejercicio. [ 5 puntos] Dadas las funciones f : [0,+ ) R y g : [0, + ) R definidas por y calcula el área del

Más detalles

1. ESQUEMA - RESUMEN Página 2 2. EJERCICIOS DE INICIACIÓN Página 4 3. EJERCICIOS DE DESARROLLO Página EJERCICIOS DE REFUERZO Página 22

1. ESQUEMA - RESUMEN Página 2 2. EJERCICIOS DE INICIACIÓN Página 4 3. EJERCICIOS DE DESARROLLO Página EJERCICIOS DE REFUERZO Página 22 1. ESQUEMA - RESUMEN Página 2 2. EJERIIOS DE INIIAIÓN Página 4 3. EJERIIOS DE DESARROLLO Página 10 4. EJERIIOS DE REFUERZO Página 22 1 1. ESQUEMA - RESUMEN Página 1.1. OORDENADAS Y GRÁFIAS ARTESIANAS.

Más detalles

1. Representa gráficamente las funciones f (x) =3x + 2 y g(x) = -3x + 2. De qué depende que una función lineal sea creciente o decreciente?

1. Representa gráficamente las funciones f (x) =3x + 2 y g(x) = -3x + 2. De qué depende que una función lineal sea creciente o decreciente? UD 4 Funciones. Características globales 4º ESO (opción A) 1. Representa gráficamente las funciones f (x) =3x + 2 y g(x) = -3x + 2. De qué depende que una función lineal sea creciente o decreciente? 2.

Más detalles

Continuidad, límites y asíntotas

Continuidad, límites y asíntotas 9 Continuidad, ites y asíntotas. Funciones especiales Piensa y calcula Completa la siguiente tabla: Parte entera de Parte decimal de Valor absoluto de 0,3 0,3,8,8 2,4 2,4 3,9 Ent () Dec () 3,9 0,3 0,3,8,8

Más detalles

Técnico Profesional FÍSICA

Técnico Profesional FÍSICA Programa Técnico Profesional FÍSICA Movimiento III: movimientos con aceleración constante Nº Ejercicios PSU 1. En un gráfi co velocidad / tiempo, el valor absoluto de la pendiente y el área entre la recta

Más detalles

Si se pueden obtener las imágenes de x por simple sustitución.

Si se pueden obtener las imágenes de x por simple sustitución. TEMA 0: REPASO DE FUNCIONES FUNCIONES: TIPOS DE FUNCIONES Funciones algebraicas En las funciones algebraicas las operaciones que hay que efectuar con la variable independiente son: la adición, sustracción,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 0 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

EJERCICIOS DE REPASO PARA PREPARAR EL EXAMEN DE SEPTIEMBRE 2007 DE MATEMÁTICAS B PARA LOS CURSOS 4º ESO A Y 4º ESO B

EJERCICIOS DE REPASO PARA PREPARAR EL EXAMEN DE SEPTIEMBRE 2007 DE MATEMÁTICAS B PARA LOS CURSOS 4º ESO A Y 4º ESO B EJERCICIOS DE REPASO PARA PREPARAR EL EXAMEN DE SEPTIEMBRE 007 DE MATEMÁTICAS B PARA LOS CURSOS 4º ESO A Y 4º ESO B ) Clasifica los siguientes números como naturales, enteros, racionales e irracionales,

Más detalles

Matemáticas. Cuaderno de ejercicios. 6º de primaria. Nombre

Matemáticas. Cuaderno de ejercicios. 6º de primaria. Nombre Matemáticas Cuaderno de ejercicios 6º de primaria Nombre www.planetasaber.com 1. Escribe en palabras los números siguientes: 59.784: Doscientos...................................................................................................................................................................

Más detalles

Página 123 EJERCICIOS Y PROBLEMAS PROPUESTOS. Dominio de definición PARA PRACTICAR UNIDAD. 1 Halla el dominio de definición de estas funciones: 2x + 1

Página 123 EJERCICIOS Y PROBLEMAS PROPUESTOS. Dominio de definición PARA PRACTICAR UNIDAD. 1 Halla el dominio de definición de estas funciones: 2x + 1 Página 3 EJERCICIOS PROBLEMAS PROPUESTOS PARA PRACTICAR Dominio de definición Halla el dominio de definición de estas funciones: 3 x a) y = y = x + x (x ) c) y = d) y = e) y = x + x + 3 5x x f) y = x x

Más detalles

Funciones 1. D = Dom ( f ) = x R / f(x) R. Recuerda como determinabas los dominios de algunas funciones: x x

Funciones 1. D = Dom ( f ) = x R / f(x) R. Recuerda como determinabas los dominios de algunas funciones: x x Funciones. DEFINICIÓN Y TERMINOLOGÍA.. Definición de función real de variable real. "Es toda correspondencia, f, entre un subconjunto D de números reales y R (o una parte de R), con la condición de que

Más detalles

1. Funciones y sus gráficas

1. Funciones y sus gráficas FUNCIONES 1. Funciones sus gráficas Función es una relación entre dos variables a las que, en general se les llama e. es la variable independiente. es la variable dependiente. La función asocia a cada

Más detalles

IES PADRE SUÁREZ MATEMÁTICAS II DEPARTAMENTO DE MATEMÁTICAS

IES PADRE SUÁREZ MATEMÁTICAS II DEPARTAMENTO DE MATEMÁTICAS Ejercicios de continuidad y derivabilidad. Selectividad de 008, 009, 00 y 0 Anális 008 Ejercicio.- Sean f : R R y g : R R las funciones definidas por f() = + a + b y g() = c e -(+). Se sabe que las gráficas

Más detalles

Derivadas e integrales

Derivadas e integrales Derivadas e integrales Álvarez S., Caballero M.V. y Sánchez M a M [email protected], [email protected], [email protected] ÍNDICE Matemáticas Cero Índice. Definiciones 3. Herramientas 4.. Reglas de derivación.......................

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva

Más detalles

FUNDAMENTOS DEL ÁLGEBRA. Folleto De Trabajo Para La Clase ECUACIONES LINEALES EN DOS VARIABLES

FUNDAMENTOS DEL ÁLGEBRA. Folleto De Trabajo Para La Clase ECUACIONES LINEALES EN DOS VARIABLES FUNDAMENTOS DEL ÁLGEBRA Folleto De Trabajo Para La Clase ECUACIONES LINEALES EN DOS VARIABLES NOMBRE ID SECCIÓN SALÓN Prof. Eveln Dávila Contenido TEMA: Ecuaciones Lineales En Dos Variables... Solución

Más detalles

OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Variables. Relación funcional.

OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Variables. Relación funcional. 86 _ 069-078.qxd 7//07 : Página 69 Funciones INTRODUCCIÓN El concepto de función es uno de los más importantes que se tratan en este curso y, aunque no reviste una especial dificultad, plantea a veces

Más detalles

2.- Tablas de frecuencias

2.- Tablas de frecuencias º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II TEMA 3.- ESTADÍSTICA DESCRIPTIVA PROFESOR: RAFAEL NÚÑEZ -----------------------------------------------------------------------------------------------------------------------------------------------------------------

Más detalles

Funciones: Tablas, gráficos y fórmulas

Funciones: Tablas, gráficos y fórmulas Funciones: Tablas, gráficos y fórmulas TEMA: FUNCIONES Una función es una relación entre dos magnitudes de forma que a cada valor de la primera magnitud, llamada variable independiente, le corresponde

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 4 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad

Más detalles

FUNCIONES 1. DEFINICION DOMINIO Y RANGO

FUNCIONES 1. DEFINICION DOMINIO Y RANGO 1. DEFINICION DOMINIO Y RANGO FUNCIONES Antes de definir función, uno de los conceptos fundamentales y de mayor importancia de todas las matemáticas, plantearemos algunos ejercicios que nos eran de utilidad

Más detalles

5 Continuidad y derivabilidad de funciones reales de varias variables reales.

5 Continuidad y derivabilidad de funciones reales de varias variables reales. 5 Continuidad y derivabilidad de funciones reales de varias variables reales. 5.1 Funciones reales de varias variables reales. Curvas de nivel. Continuidad. 5.1.1 Introducción al Análisis Matemático. El

Más detalles

Movimiento, rapidez y velocidad

Movimiento, rapidez y velocidad Física Unidad 1 Movimiento, rapidez y velocidad Objetivo Interpreta la velocidad como la relación entre desplazamiento y tiempo, y la diferencia de la rapidez, a partir de datos obtenidos de situaciones

Más detalles

GIMNASIO VIRTUAL SAN FRANCISCO JAVIER Valores y Tecnología para la Formación Integral del Ser Humano UNIDAD I FUNCIONES

GIMNASIO VIRTUAL SAN FRANCISCO JAVIER Valores y Tecnología para la Formación Integral del Ser Humano UNIDAD I FUNCIONES UNIDAD I FUNCIONES Una función es una correspondencia entre dos conjuntos, que asocia a cada elemento del primer conjunto exactamente un elemento del otro conjunto. Una función f definida entre dos conjuntos

Más detalles

UNIDAD II. VARIACION DIRECTAMENTE PROPORCIONAL Y FUNCIONES LINEALES

UNIDAD II. VARIACION DIRECTAMENTE PROPORCIONAL Y FUNCIONES LINEALES UNIDAD II. VARIACION DIRECTAMENTE PROPORCIONAL Y FUNCIONES LINEALES Al finalizar esta unidad: - Describirás verbalmente en que consiste el cambio y cuáles son los aspectos involucrados en él. - Identificarás

Más detalles

Funciones y gráficas. Objetivos. Antes de empezar. 1.Funciones pág. 162 Concepto Tablas y gráficas Dominio y recorrido

Funciones y gráficas. Objetivos. Antes de empezar. 1.Funciones pág. 162 Concepto Tablas y gráficas Dominio y recorrido 9 Funciones y gráficas Objetivos En esta quincena aprenderás a: Conocer e interpretar las funciones y las distintas formas de presentarlas. Reconocer el dominio y el recorrido de una función. Determinar

Más detalles

Solución: Las rectas paralelas a estas tienen la misma pendiente, es decir 2; por tanto la ecuación es:

Solución: Las rectas paralelas a estas tienen la misma pendiente, es decir 2; por tanto la ecuación es: Representa las rectas y = x + e y = x y calcula el punto que tienen en común El punto que tienen en común estas dos rectas se obtiene resolviendo el siguiente sistema de ecuaciones: y = x + y = x 3 x =,

Más detalles

CORRELACIÓN Y REGRESIÓN. Raúl David Katz

CORRELACIÓN Y REGRESIÓN. Raúl David Katz CORRELACIÓN Y REGRESIÓN Raúl David Katz 1 Correlación y regresión Introducción Hasta ahora hemos visto el modo de representar la distribución de frecuencias de los datos correspondientes a una variable

Más detalles

ANÁLISIS DESCRIPTIVO DE FUNCIONES Y GRÁFICAS

ANÁLISIS DESCRIPTIVO DE FUNCIONES Y GRÁFICAS ANÁLISIS DESCRIPTIVO DE FUNCIONES Y GRÁFICAS INTRODUCCIÓN La noción actual de función comienza a gestarse en el siglo XIV, cuando empiezan a preocuparse de medir y representar las variaciones de ciertas

Más detalles

TEMA 2: El movimiento. 2.- Explica razonadamente el significado de la siguiente frase: el movimiento absoluto no existe.

TEMA 2: El movimiento. 2.- Explica razonadamente el significado de la siguiente frase: el movimiento absoluto no existe. Física y Química Curso 2011/12 4º E.S.O. TEMA 2: El movimiento 1.- Por qué se dice que el movimiento es relativo? 2.- Explica razonadamente el significado de la siguiente frase: el movimiento absoluto

Más detalles

TRABAJO DE SEPTIEMBRE DE MATEMÁTICAS 2º ESO... NOMBRE Y APELLIDOS...

TRABAJO DE SEPTIEMBRE DE MATEMÁTICAS 2º ESO... NOMBRE Y APELLIDOS... TRABAJO DE SEPTIEMBRE DE MATEMÁTICAS 2º ESO... NOMBRE Y APELLIDOS... 1ª Realizar las siguientes divisiones: a) 345,83 : 6 = b) 23 : 0, 5 = c) 0,18 : 0,12 = d) 34,15 : 5 = e) 2,16 : 1,8 = f) 13,02 : 0,25=

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DERIVADA Ejercicio -Sea f: R R la función definida por f ( ) = + a + b + a) [ 5 puntos] Determina a, b R sabiendo que la gráfica de f pasa por el punto (, ) y tiene un punto de infleión

Más detalles

EJERCICIOS DE REPASO MATEMÁTICAS 3º ESO

EJERCICIOS DE REPASO MATEMÁTICAS 3º ESO EJERCICIOS DE REPASO MATEMÁTICAS º ESO TEMA : Los Números y sus utilidades I. Efectúa y simplifica. 6 0. Reduce a una sola fracción y simplifica.. Opera y simplifica el resultado. :. Victoria se gasta

Más detalles

Hoja 6: Estadística descriptiva

Hoja 6: Estadística descriptiva Hoja : Estadística descriptiva Hoja : Estadística descriptiva May Dada la siguiente distribución de frecuencias, halle: a) la mediana; b) la media. Número (x) Frecuencia (y) May De enero a septiembre la

Más detalles

CONTINUIDAD Y DERIVABILIDAD

CONTINUIDAD Y DERIVABILIDAD . Sea la función f ( ) = 6 CONTINUIDAD Y DERIVABILIDAD a. Determine sus puntos de corte con los ejes. b. Calcule sus etremos relativos y su punto de infleión. c. Represente gráficamente la función.. Sea

Más detalles

ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS

ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS Ejercicio 1 De la función se sabe que tiene un máximo en, y que su gráfica corta al eje OX en el punto de abscisa y tiene un punto de inflexión en el punto

Más detalles

CINEMÁTICA MRU 4º E.S.O. MRUA. Caída y lanzamiento de cuerpos

CINEMÁTICA MRU 4º E.S.O. MRUA. Caída y lanzamiento de cuerpos MRU MRUA CINEMÁTICA 4º E.S.O. Caída y lanzamiento de cuerpos Movimiento Rectilíneo Uniforme 1. Un corredor hace los 400 metros lisos en 50 seg. Calcula la velocidad en la carrera. Sol: 8m/s. 2. Un automovilista

Más detalles

Aplicación: cálculo de áreas XII APLICACIÓN: CÁLCULO DE ÁREAS

Aplicación: cálculo de áreas XII APLICACIÓN: CÁLCULO DE ÁREAS XII APLICACIÓN: CÁLCULO DE ÁREAS El estudiante, hasta este momento de sus estudios, está familiarizado con el cálculo de áreas de figuras geométricas regulares a través del uso de fórmulas, como el cuadrado,

Más detalles

Inecuaciones: Actividades de recuperación.

Inecuaciones: Actividades de recuperación. Inecuaciones: Actividades de recuperación. 1.- Escribe la inecuación que corresponde a los siguientes enunciados: a) El perímetro de un triángulo equilátero es menor que 4. (x = lado del triángulo) b)

Más detalles

133 ESO. «No esperes a tener sed para empezar a excavar el pozo»

133 ESO. «No esperes a tener sed para empezar a excavar el pozo» «No esperes a tener sed para empezar a ecavar el pozo» 1 ESO ÍNDICE: EDAD DEL UNIVERSO 1. PROPORCIONALIDAD. GRÁFICAS. RECTAS QUE NO COMIENZAN EN EL ORIGEN. FORMA EPLÍCITA E IMPLÍCITA DE UNA RECTA 5. INTERSECCIÓN

Más detalles

La recta en el plano.

La recta en el plano. 1 CONOCIMIENTOS PREVIOS. 1 La recta en el plano. 1. Conocimientos previos. Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: Intervalos y sus definiciones básicas. Representación

Más detalles

BOLETÍN EJERCICIOS TEMA 4 TRABAJO Y ENERGÍA

BOLETÍN EJERCICIOS TEMA 4 TRABAJO Y ENERGÍA Curso 2011-2012 BOLETÍN EJERCICIOS TEMA 4 TRABAJO Y ENERGÍA 1. Halla la energía potencial gravitatoria de un libro de 500 gramos que se sitúa a 80 cm de altura sobre una mesa. Calcula la energía cinética

Más detalles